题目
给你 N 个节点, 任意一对节点之间相连的概率为 p, 求整个图是连通图的概率.
题目链接
基础知识
假设有两个事件,
事件 X X X 可能的取值是 { 1 , 0 } \{1, 0\} {
1,0}
事件 Y Y Y 可能的取值是 { y 1 , y 2 , . . . , y n } \{y_1, y_2, ... , y_n\} {
y1,y2,...,yn}
那么概率
P ( X = 1 ) = ∑ i = 1 n P ( X = 1 , Y = y i ) P(X=1) = \sum_{i=1}^nP(X = 1, Y=y_i) P(X=1)=∑i=1nP(X=1,Y=yi)
思路
首先, 记事件 X = { 1 , 0 } X = \{1, 0\} X={
1,0} 表示给定图是否连通, 如对于一个 n = 5 n=5 n=5 的节点的图, 其为连通图的概率为 P 5 ( X = 1 ) P_5(X=1) P5(X=1)
显然
P 1 ( X = 1 ) = 1 P_1(X=1) = 1 P1(X=1)=1
P 2 ( X = 1 ) = p P_2(X=1) = p P2(X=1)=p
(p 表示任意两个结点之间连通的概率)
那么这道题的解法是构造如下关系:
首先, 对每个结点标号 1 , 2 , . . . , n 1, 2, ..., n 1,2,...,n
设一个新的事件 Y = { y 1 , y 2 , . . . , y n − 1 } Y=\{y_1, y_2,...,y_{n-1}\} Y={
y1,y2,