概率计算 (习题): 蒜头君王国

这篇博客探讨了一个概率计算问题,给定N个节点,任意两个节点间相连的概率为p,求整个图是连通图的概率。通过基础知识、解题思路、C语言和Python代码实现,详细解析了如何利用动态规划解决这个问题。最后,作者指出此类问题的解题技巧需要进一步练习。
摘要由CSDN通过智能技术生成

题目

给你 N 个节点, 任意一对节点之间相连的概率为 p, 求整个图是连通图的概率.
题目链接

基础知识

假设有两个事件,
事件 X X X 可能的取值是 { 1 , 0 } \{1, 0\} { 1,0}
事件 Y Y Y 可能的取值是 { y 1 , y 2 , . . . , y n } \{y_1, y_2, ... , y_n\} { y1,y2,...,yn}

那么概率
P ( X = 1 ) = ∑ i = 1 n P ( X = 1 , Y = y i ) P(X=1) = \sum_{i=1}^nP(X = 1, Y=y_i) P(X=1)=i=1nP(X=1,Y=yi)

思路

首先, 记事件 X = { 1 , 0 } X = \{1, 0\} X={ 1,0} 表示给定图是否连通, 如对于一个 n = 5 n=5 n=5 的节点的图, 其为连通图的概率为 P 5 ( X = 1 ) P_5(X=1) P5(X=1)
显然
P 1 ( X = 1 ) = 1 P_1(X=1) = 1 P1(X=1)=1
P 2 ( X = 1 ) = p P_2(X=1) = p P2(X=1)=p
(p 表示任意两个结点之间连通的概率)
那么这道题的解法是构造如下关系:
首先, 对每个结点标号 1 , 2 , . . . , n 1, 2, ..., n 1,2,...,n
设一个新的事件 Y = { y 1 , y 2 , . . . , y n − 1 } Y=\{y_1, y_2,...,y_{n-1}\} Y={ y1,y2,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值