输出指定维度的累加和
当时去查cumsum这个单词,显示没有这个单词,知道这个函数的意思之后,再反过来看,这是个合成词,cumulative sum 两个单词合成了cumsum,cumlative是累加的意思
语法:
torch.cumsum(input,dim=?)
或者
input.cumsum(dim=?)
示范:
输入:
import torch
x=torch.randint(3,[3,4])
print(x)
torch.cumsum(x,dim=-1)
输出:
tensor([[1, 1, 0, 2],
[0, 2, 0, 1],
[1, 1, 1, 1]])
tensor([[1, 2, 2, 4],
[0, 2, 2, 3],
[1, 2, 3, 4]])
dim=-1指定累加的维度为-1,加负号是需要倒着数的,-1就是倒数第一个维度,,代码示范中是生成一个三行四列的二维数组,-1在这里就是对应着1维(维数是从0开始的),横向上进行累加(‘横向上’可能跟我们的直观想象不太一样,像sum....都是这样的习惯就好)