异常账号检测汇总

对账户的异常检测是针对每个账户建立模型以判断是否异常;由于帐号权限的区别,很难简单判断多大范围的活动程度被认为有违规行为,由于业务的复杂性,也很难准确地判断帐号是处于正常状态还是异常状态。

一、对帐号的相关数据建模

分析和学习历史数据,刻画和建立正常行为模型;一般采用时间序列和马尔柯夫过程等方法。

帐号的访问频率在线持续时间常用的登录时间段特定内容的访问数据量等因素,根据不同方面所具有的行为特征,建立正常行为模型分析检测用户实际活动与正常模型偏离度,是否在一定的阈值之内,对用户的行为进行决策推断,发现行为是否有异常。

1、访问频率的模型:根据历史登录数据,建立时间序列模型。

2、活跃程度模型:根据用户在线时段,时长,活跃度等建立模型。

3、敏感数据访问量模型:根据敏感数据访问情况,建立时间序列模型。

二、对帐号的特征进行画像

根据正常模型及帐号使用环境对帐号画像;分析常用的ip工具、地理位置等对用户画像。

1、基本要素:帐号名称、常用ip、所在城市、常用浏览器、常用的软件客户端、登录频率、活跃程度、访问协议、常用访问时间段。

2、动态更新:随着时间的变化更新画像。

三、基于帐号的关联分析

1、业务的前后关联:

实际业务中,用户的操作习惯存在前后关联的情况;业务系统的设计逻辑也会使不同帐号业务之间存在前后序列关系,可通过Apriori等算法分析帐号业务操作之间的关系。

2、同帐号异地多ip, 同ip多帐号:

同ip有多个同类型的帐号登录,公用帐号使用,异地登陆等很容易发现问题

3、帐号群体划分

对帐号进行相似度计算和聚类分析,划分多个帐号簇,分析容易出现异常情况的簇群,更有利于综合得出个体与群体的关系,更好地分析是用户个体行为的变化还是用户群体行为的变化。

用户实体行为分析(User and Entity Behavior Analytics,UEBA)系统

1. 通过用户、实体、行为三要素的关联,反映用户行为基线的各类数据;

2. 定义4类特征提取维度,提取几十种最能反映用户异常的基础特征;

3. 将3种异常检测算法通过集成学习方法用于异常用户建模;

4. 通过异常打分,定位异常风险最大的一批用户。

传统方法多为分散的、事后的、缺少针对性的,安全最薄弱的环节是人,只有建立以用户为核心对象的分析体系,才能更加及时发现和终止内部威胁,

而 UEBA 是基于大数据驱动、以用户为核心、关联实体资产、采用机器学习算法进行异常分析以发现解决内部威胁的一套框架和体系。传统手段是对安全事件的关注,UEBA更关心人,通过用户画像和资产画像。

企业员工账号的关联

UEBA 属于数据驱动的安全分析技术,需要采集大量而广泛的用户行为类数据。

行为分析的基础是数据,数据采集的前提是场景,采集的数据要和分析的特定场景匹配,高质量多种类的数据是用户实体行为分析的核心。

用户实体行为分析可以使用的数据,包括安全日志、网络流量、威胁情报以及身份访问相关日志等,尽可能多地接入和用户场景相关的数据,如VPN日志、OA日志、员工卡消费日志及门禁刷脸日志等。

数据可归纳为用户身份数据、实体身份数据和用户行为数据 3 种类型。用户身份数据分为两类:真实身份数据,如人事部门提供的员工资料;虚拟身份数据,如用户在网络上的注册资料;需要有统一的数据字典,通过统一数据字典,统一不同日志的字段信息,进而关联不同日志的用户信息,通过关联真实身份与虚拟身份,达到定位具体的用户的目标。实体身份数据是网络中用户的唯一身份标识,如IP地址、MAC地址等。用户行为数据分类则可分为网络行为信息和终端行为信息。

员工账号与实体资产的关联

员工账号与实体资产关联,即用户身份数据与实体身份数据的关联,通过用户行为数据实现关联。

基础特征提取

用户行为特征提取是整个用户行为分析建模的基础,需结合业务实际需求,找出相关的数据实体,以数据实体为中心,一般的特征提取步骤包括用户数据与实体数据的分解和对应、实体间关联关系分解、用户特征维度分解以及用户行为特征的提取。

通常用4类方法提取用户行为特征,分别是用户与用户之间行为基线的对比用户组与用户组之间行为基线的对比基于用户自身行为基线对比的离散数据特征提取基于用户自身行为基线对比的连续数据特征提取

基于大部分用户行为是正常的原则,通过用户与用户之间的行为基线对比,可以发现偏离集群基线的少数用户,这些少数用户就是疑似异常的,如非工作时间的用户行为异常。

可使用所有员工的历史行为记录,通过核密度估计(Kernel Density Estimation,KDE)计算一天24 h每个时间点用户访问资源的概率密度,将概率低于动态阈值的时间点定义为非工作时间,把员工在非工作时间段产生的行为提取为一个异常特征。

用户组与用户组之间行为基线的对比。通常在企业内部处于同一个部门相似岗位的员工应该有类似的行为基线,不同部门之间如技术部门与销售部门工作上有较大差异,反映在网络行为和终端行为上肯定会有较大不同。同角色属性或者同部门的员工应该会有更多共同访问对象和访问目的;根据日志信息,建立用户和一段时间内被访问较多的或者业务相关的URL的关联矩阵。矩阵元素可以是访问次数、访问时长或者平均访问时长,利用欧式距离计算客户之间的距离,并进行聚类操作。

对远离自身角色所在部门群组的用户可以标记为异常,同时基于用户与群组中心的距离给出偏离度,针对异常出现的偏离程度,可提取访问异常特征。偏离度的计算公式如下:

Di :i 用户的偏离度;di:i 用户与簇中心距离;dmean:同组用户与簇中心距离均值

用户自身行为基线对比的离散数据特征提取,建立正常的用户基线可对偏离历史基线的用户行为提取异常特征。如:用户使用新 IP。通过一些场景的设想,可以基于用户自身行为基线提取离散数据的异常特征。

基于用户自身行为基线对比的连续数据特征提取,学习用户的连续数据的行为基线,对偏离历史基线的用户行为提取异常特征。

基于Ensemble Learning的异常用户检测

通过访问关系的关联,将用户、实体和行为特征等 3 大要素映射到核心的用户行为上。

内部攻击并不经常发生,标签数据的稀少性决定了多数情况下UEBA使用的是无监督学习算法。

不依赖先前的攻击知识反而允许系统发现少见的和过往未曾发现的威胁。异常检测的主要任务是在正常的用户数据集中提取出小概率的异常数据点,这些异常点的产生不是由于随机偏差,而是有如故障、威胁、入侵等完全不同的机制。采用孤立森林、One Class SVM以及局部异常因子3种算法的集成来全面识别和评价最可能影响系统的各种异常用户。利用这3种算法进行异常检测,可以分别得到所有用户的异常打分。对3种算法结果进行加权归一,便可以得到最终的针对所有用户的异常打分排名。

参考:

用户账号异常分析 - 简书 (jianshu.com)

基于机器学习的用户实体行为分析技术在账号异常检测中的应用-阿里云开发者社区 (aliyun.com)

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值