本笔记记录使用LSTMCell做IMDB情感分析,代码和前一个笔记使用SimpleRNN的代码基本一致,除了创建state的时候tensor的list包含两个状态参数外,基本没有任何区别。
import os
import time
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics, Input
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
#tf.random.set_seed(12345)
#np.random.seed(22)
tf.__version__
#取常见的10000个单词
total_words = 10000
#句子最长的单词数量设置为80
max_review_len = 80
#embedding设置为100,表示每个单词用100维向量表示
embedding_len = 100
#加载IMDB数据集
(x_train,y_train), (x_test, y_test) = datasets.imdb.load_data(num_words = total_words)
#对训练数据和测试数据的句子进行填充或截断
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)
#构建数据集
batchsize = 128
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batchsize, drop_remai

最低0.47元/天 解锁文章
1617

被折叠的 条评论
为什么被折叠?



