A*算法 C++简单实现走迷宫

        A*算法是一种启发式搜索算法,通常用于在图或者网络中找到从起始节点到目标节点的最短路径。A*算法在维持最小堆(或优先队列)的基础上,通过估算从起始节点到目标节点的代价(启发函数)来指导搜索过程。该算法同时考虑了实际路径成本(已经走过的路径长度)和启发函数的估计值,以选择下一步最有希望的路径。

基本原理和步骤

  1. 节点表示: 将搜索的图或网络表示为一系列节点,每个节点代表一个位置。

  2. 代价估计: 对每个节点计算两个值:已走过路径的实际成本(g值)和从当前节点到目标节点的估计成本(h值)。

  3. 总成本计算: 计算总成本f值,即已走过路径的实际成本加上估计成本。

  4. 节点扩展: 从开放列表(未完全探索的节点)中选择f值最小的节点进行扩展,将其相邻节点加入开放列表。

  5. 目标检查: 如果目标节点被加入开放列表,算法结束;否则,重复步骤 3 到步骤 5。

核心思想

        A算法的核心思想是维护一个开放列表,其中包含待探索的节点。每次选择开放列表中f值(g值 + h值)最小的节点进行扩展。通过使用启发函数估计目标节点的距离,A算法能够更聪明地选择下一步的移动方向,以减少搜索空间,提高搜索效率。

示例代码

走迷宫

#include <iostream>
#include <vector>
#include <queue>
#include <cmath>

using namespace std;

// 定义节点结构体
struct Node {
    int x, y;  // 节点在网格中的坐标
    int g;     // 从起点到该节点的实际代价
    int h;     // 从该节点到目标的估计代价
    int f;     // f = g + h,综合考虑实际代价和启发式代价

    bool operator<(const Node& other) const {
        return f > other.f;
    }
};

// 定义A*算法函数
vector<pair<int, int>> AStar(const vector<vector<int>>& grid, pair<int, int> start, pair<int, int> goal) {
    // 定义移动方向,上下左右和对角线
    const int dx[] = { -1, 0, 1, 0, -1, -1, 1, 1 };
    const int dy[] = { 0, 1, 0, -1, -1, 1, -1, 1 };

    int rows = grid.size();
    int cols = grid[0].size();

    // 创建二维数组来存储每个节点的父节点坐标
    vector<vector<pair<int, int>>> parent(rows, vector<pair<int, int>>(cols, { -1, -1 }));

    // 创建二维数组来存储每个节点的g值
    vector<vector<int>> g(rows, vector<int>(cols, INT_MAX));

    // 创建优先队列来存储待探索的节点
    priority_queue<Node> pq;

    // 初始化起点
    Node startNode = { start.first, start.second, 0, 0, 0 };
    pq.push(startNode);
    g[start.first][start.second] = 0;

    // A*算法主循环
    while (!pq.empty()) {
        // 取出当前f值最小的节点
        Node current = pq.top();
        pq.pop();

        // 到达目标节点,构建路径并返回
        if (current.x == goal.first && current.y == goal.second) {
            vector<pair<int, int>> path;
            while (current.x != -1 && current.y != -1) {
                path.push_back({ current.x, current.y });
                current = { parent[current.x][current.y].first, parent[current.x][current.y].second };
            }
            reverse(path.begin(), path.end());
            return path;
        }

        // 探索当前节点的邻居
        for (int i = 0; i < 8; ++i) {
            int nx = current.x + dx[i];
            int ny = current.y + dy[i];

            // 检查邻居是否在网格内且不是障碍物
            if (nx >= 0 && nx < rows && ny >= 0 && ny < cols && grid[nx][ny] != 1) {
                int new_g = current.g + 1;

                // 如果新的g值更小,更新节点信息
                if (new_g < g[nx][ny]) {
                    g[nx][ny] = new_g;
                    int h = abs(nx - goal.first) + abs(ny - goal.second); // 曼哈顿距离作为启发式函数
                    int f = new_g + h;

                    // 将邻居节点加入优先队列
                    pq.push({ nx, ny, new_g, h, f });
                    parent[nx][ny] = { current.x, current.y };
                }
            }
        }
    }

    // 如果队列为空,说明没有找到路径
    return {};
}

// 打印路径的函数
void printPath(const vector<pair<int, int>>& path) {
    for (const auto& point : path) {
        cout << "(" << point.first << ", " << point.second << ") ";
    }
    cout<<endl;
}

void printPathAndMap(const vector<vector<int>>& grid, const vector<pair<int, int>>& path) {
    // 复制一份原始地图,用于标记路径
    vector<vector<int>> mapWithPaths = grid;

    // 在地图上标记路径
    for (const auto& point : path) {
        mapWithPaths[point.first][point.second] = -1;
    }

    // 打印地图
    for (const auto& row : mapWithPaths) {
        for (int cell : row) {
            if (cell == 0) {
                cout << "0 ";  // 0表示可走路径
            }
            else if (cell == 1) {
                cout << "1 ";  // 1表示障碍物
            }
            else if (cell == -1) {
                cout << "* ";  // -1表示路径
            }
        }
        cout << endl;
    }
}

int main() {
    //地图网格,0表示可走路径,1表示障碍物
    vector<vector<int>> grid = {
        {0, 0, 0, 0, 0,0},
        {0, 1, 1, 0, 0,1},
        {0, 0, 0, 1, 0,1},
        {0, 1, 0, 1, 0,0},
        {0, 0, 0, 0, 0,1},
        {0, 1, 1, 0, 1,0}
    };

    pair<int, int> start = { 0, 0 };
    pair<int, int> goal = { 5, 5 };

    vector<pair<int, int>> path = AStar(grid, start, goal);

    // 输出路径
    printPath(path);

    printPathAndMap(grid, path);

    return 0;
}

运行结果:

在A*算法主循环中,要不断从优先队列中取出f值最小的节点进行探索。如果当前节点是目标节点,就通过父节点链追溯回起点,构建路径并返回。否则,将当前节点的邻居加入优先队列进行进一步探索。

关键的步骤包括:

  1. 初始化起点并将其加入优先队列。
  2. 在主循环中,反复从优先队列中取出节点,探索其邻居,并更新节点信息。
  3. 如果找到目标节点,通过父节点链构建路径并返回。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值