P2 PEHV构型下的ECMS能量管理策略分析及仿真结果揭示,手动搭建PEHV能量管理策略模型,图示结果与ECMS策略比对

P2 PEHV,P2构型插电式混合动力汽车ECMS等效燃油消耗最小能量管理策略
模型全部为自己手动搭建,参考可靠文献,非download随便改改糊弄,真正做到看的懂。
P2并联PEHV的ECMS能量管理策略。
图1是模型整体结构
图2是发动机,电机,电池等MAP图
图3是策略截图
图4是模型仿真结果(3次WLTC工况)
图5是ECMS策略,部分截图,采用m文件编写
模型运行正确,通过调整不同等效因子能够得到不同的SOC和发动机油耗结果。


ID:16700769411218692

皓月千里1992


P2 PEHV,P2构型插电式混合动力汽车ECMS等效燃油消耗最小能量管理策略

近年来,插电式混合动力汽车(PEHV)作为一种环保、经济高效的交通工具受到了越来越多的关注和认可。其中,P2构型的PEHV拥有较高的动力性能和燃油经济性,被广泛应用于汽车市场。为了进一步提升P2 PEHV的燃油经济性,最小能量管理策略(ECMS)被设计和应用于该车型。

首先,为了确保ECMS的准确性和实用性,我们采用了自己手动搭建模型的方法,参考了可靠的文献。与随意下载修改的模型不同,我们的模型经过深入研究,保证了其可信度和可解释性。通过我们的模型,可以轻松理解和分析P2 PEHV的ECMS能量管理策略。

图1展示了我们模型的整体结构。该模型包括了发动机、电机、电池等关键组件,并通过ECMS策略来管理能量的分配。图2展示了发动机、电机、电池等组件的MAP图,这些图表展示了各组件在不同工况下的性能特点,为我们设计ECMS策略提供了基础。

在图3中,我们展示了ECMS策略的部分截图。这些截图展示了ECMS策略对不同工况下能量的管理方式。通过采用m文件编写,我们实现了ECMS策略的精确控制和调整。这一策略的应用使得P2 PEHV在不同工况下能够以最小的能量消耗实现最佳的燃油经济性。

通过模型的仿真结果(图4),我们可以清楚地看到在3次WLTC工况下,P2 PEHV的燃油消耗情况。通过调整不同的等效因子,我们可以得到不同的电池SOC和发动机油耗结果。这些结果验证了我们模型的准确性和有效性。

值得一提的是,我们的模型还可以拓展到其他类型的插电式混合动力汽车,如双电机P1+P3或增程式PHEV等车型。只需根据需求进行相应的修改即可。我们的模型是个人原创,除此之外所见即所得,绝不是简单的复制粘贴。

综上所述,P2构型插电式混合动力汽车的ECMS能量管理策略在提升燃油经济性方面起到了积极的作用。我们通过自己手动搭建模型,并参考可靠文献进行验证,确保了该策略的准确性和可解释性。未来,我们的模型可以进一步拓展和应用于更多类型的混合动力汽车,为环保出行做出更大贡献。

以上相关代码,程序地址:http://fansik.cn/769411218692.html

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值