强化学习的方法总结与分类

        强化学习中有多种不同的方法,比如说比较知名的控制方法 Q learning,Policy Gradients,还有基于对环境的理解的 model-based RL 等等。了解强化学习中常用到的几种方法,以及他们的区别, 对我们根据特定问题选择方法时很有帮助。接下来我们通过分类的方式来了解他们的区别。

        第一种分类方法可分为不理解环境(Model-Free RL)和理解环境(Model-Based RL),其区别如下:

 Model-Free RLModel-Based RL
描述

从环境中得到反馈然后学习

只能按部就班, 一步一步等待真实世界的反馈, 再根据反馈采取下一步行动.

可建立虚拟模型,事先理解环境,进行伪现实世界建模

可通过想象来预判断接下来将要发生的所有情况. 然后选择这些想象情况中最好的那种

主要方法Q learning,Sarsa,Policy GradientsQ learning,Sarsa,Policy Gradients

        第二种分类方法可分为基于概率(Policy-Based RL)和 基于价值(Value-Based RL),其区别如下:

 Policy-Based RLValue-Based RL
描述

最直接, 可通过感官分析所处的环境, 直接输出下一步要采取的各种动作的概率, 然后根据概率采取行动, 所以每种动作都有可能被选中, 只是可能性不同

可利用概率分布在连续动作中选取特定动作

输出所有动作的价值, 根据最高价值来选择动作

对于选取连续的动作无能为力

主要方法Policy Gradients,...Q learning,Sarsa,...

        我们还能结合这两类方法的优势之处, 创造更牛逼的一种方法, 叫做 Actor-Critic , actor 会基于概率做出动作, 而 critic 会对做出的动作给出动作的价值, 这样就在原有的 policy gradients 上加速了学习过程.

         第三种分类方法可分为回合更新(Monte-Carlo update)和单步更新(Temporal-Difference update),其区别如下:

 Monte-Carlo updateTemporal-Difference update
描述例如玩游戏时,从开始到结束一整个回合更新一次相当于在游戏过程中每一步都进行更新
主要方法基础版Policy Gradients,Monte-Carlo learningQ learning,Sarsa,升级版Policy Gradients

        因为单步更新更有效率, 所以现在大多方法都是基于单步更新.

        第四种分类方法可分为在线学习(On-Policy)和离线学习(Off-Policy),其区别如下:

 On-PolicyOff-Policy
描述必须本人在场,且本人边玩边学习

可以选择自己玩或者看着别人玩,后者学习别人的行为准则

不必要边玩边学习, 可以存储下记忆, 再通过离线学习来学习之前的记忆.

主要方法Sarsa,Sarsa(入)Q learning,Deep-Q-Network
  • 7
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值