机器学习实战(三)


title: 机器学习实战(三)
date: 2020-03-06 10:15:50
tags: [决策树, ID3]
categories: 机器学习实战
更多内容请关注我的博客

决策树的简介

你是否玩过二十个问题的游戏,就是你在脑海中想某个事物,向你提问二十个问题推测出你想的东西。这个游戏的原理和决策树类似,下面是一个判断垃圾邮件的决策树。

image

决策树的构造

决策树
优点:计算复杂度不高,输出的结果易于理解,对中间值的缺失不敏感,可以处理不相关特征的数据
缺点:可能会产生过度匹配的问题
适用数据类型:数值型和标称型

在构造决策树时,首先要确定哪些特征在划分数据分类时起到决定性的作用,为了划分出最好的结果,我们必须评估每个特征,创建分支的伪代码createBranch()函数如下

if so returen 类标签
else
    寻找划分数据集的最好特征
    划分数据集
    创建分支节点
        for 每个划分的子集
            调用函数createBranch并增加返回结果到分支节点中
    return 分支节点

上面的伪代码createBranch()是一个递归函数,在倒数第二行直接调用自己。

决策树的一般流程:

  1. 收集数据
  2. 准备数据
  3. 分析数据
  4. 训练算法
  5. 测试算法
  6. 使用算法

信息增益

划分数据集的大原则是:将无序的数据变得更加有序,如何能知道数据是向有序的方向划分呢?方法有很多,这里的方法为香浓熵(其它方法还有基尼系数)。

熵的定义为信息的期望值,如果待分类的事物可能划分在多个分类之中,则符号 x i x_i xi的信息定义为

l ( x i ) = − log ⁡ 2 p ( x i ) l(x_i)=-\log_2p(x_i) l(xi)=log2p(xi)

其中 p ( x i ) p(x_i) p(xi)是选择分类的概率

为了计算熵,我们需要计算所有类别所有可能值包含的信息期望值,通过下面公式得到:

H = − ∑ i = 1 n p ( x i ) log ⁡ 2 p ( x i ) H = -\sum_{i=1}^n p(x_i)\log_2p(x_i) H=i=1np(xi)log2p(xi)

其中n是分类的数目,下面用python计算信息熵

from math import log

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    # 为所有可能分的类创建字典,如果类别已经记录,则记录当前类别出现的次数
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    # 计算每个类别的出现的概率,然后套入公式求出熵
    for key in labelCounts:
        prob = float(labelCounts[key]) / numEntries
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

下面创建了一个数据集测试一下

def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no'],
              ]
    labels = ['no surfacing', 'flippers']
    return dataSet, labels
myDat, labels = createDataSet()
myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
calcShannonEnt(myDat)
0.9709505944546686

熵越高,则混合的数据也越多,我们可以在数据集中添加更多的分类,观察熵是如何变化的,添加一个maybe的类别

myDat[0][-1]='maybe'
myDat
[[1, 1, 'maybe'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
calcShannonEnt(myDat)
1.3709505944546687

划分数据集

得到熵后我们就可以按照获取最大信息增益的方法划分数据集

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

splitDatSet()有三个参数:待划分的数据集,划分数据集的特征列,需要返回的特征值

# 注意append和extend的不同
a = [1, 2, 3]
b = [4, 5, 6]
a.append(b)
a
[1, 2, 3, [4, 5, 6]]
a = [1, 2, 3]
a.extend(b)
a
[1, 2, 3, 4, 5, 6]

用前面简单的数据集测试一下

myDat, labels = createDataSet()
myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
splitDataSet(myDat, 1, 1)
[[1, 'yes'], [1, 'yes'], [0, 'no'], [0, 'no']]
splitDataSet(myDat, 0, 0)
[[1, 'no'], [1, 'no']]

接下来遍历整个数据集,循环计算香农熵splitDataSet()函数,找到最好的特征划分方式。

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if (infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature
chooseBestFeatureToSplit(myDat)
0
myDat
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]

代码运行告诉我们第0个特征划分最好

递归构建决策树

目前我们已经构建好所有决策树算法所需的子功能模块,其工作原理如下:
得到原始数据集,然后基于最好的属性划分数据集,由于特征值可能多于两个,因此可能存在大于两个分支的数据集划分。第一次划分后,数据将被向下传递到树分支的下一节点,在这个节点上,我们可以再次划分数据,因此我们可以采用递归的原则处理数据集。

递归结束的条件是:程序遍历完所有的划分数据集的属性,或者每个分支下的所有实例都具有相同的分类。如果所有实列具有相同的分类,则得到一个叶子节点或者终止块。

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
            classCount[vote] += 1
        sortedClassCount = sorted(classCount,iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

上面代码的作用市,当遍历完所有的特征时,我们用投票表决的方法,返回出现次数最多的类别

def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
    return myTree
myDat, labels = createDataSet()
myTree = createTree(myDat, labels)
myTree
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

绘制树形图

为了更清晰的看出我们创建的树,可以用matplotlib绘图

使用文本注解绘制树节点

import matplotlib.pyplot as plt

# 定义文本框和箭头格式
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

# 绘制带箭头的注解
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                            xytext=centerPt, textcoords='axes fraction',
                            va='center', ha='center', bbox=nodeType, arrowprops=arrow_args)

def createPlot():
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    createPlot.ax1 = plt.subplot(111, frameon=False)
    plotNode('决策节点', (0.5, 0.1), (0.1, 0.5), decisionNode)
    plotNode('叶节点', (0.8, 0.1), (0.3, 0.8), leafNode)
    plt.show()
createPlot()

在这里插入图片描述

构造注解树

绘制一颗完整的树需要一些技巧,我们必须有x,y坐标,知道多少个叶节点,确定x轴的长度,树的深度,确定y轴的高度,这里编写两个函数getNumLeafs()和getTreeDepth(),来获取叶节点数和树的深度。

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in list(secondDict.keys()):
        if type(secondDict[key]).__name__=='dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs

def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in list(secondDict.keys()):
        if type(secondDict[key]).__name__=='dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth
def retrieveTree(i):
    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                  {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                  ]
    return listOfTrees[i]
retrieveTree(1)
{'no surfacing': {0: 'no',
  1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
myTree = retrieveTree(0)
getNumLeafs(myTree)
3
getTreeDepth(myTree)
2

接下来我们画出这颗树

def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString)

def plotTree(myTree, parentPt, nodeTxt):
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in list(secondDict.keys()):
        if type(secondDict[key]).__name__ == 'dict':
            plotTree(secondDict[key], cntrPt, str(key))
        else:
            plotTree.xOff = plotTree.xOff +  1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW
    plotTree.yOff = 1.0
    plotTree(inTree, (0.5, 1.0), '')
    plt.show()
myTree = retrieveTree(0)
createPlot(myTree)

在这里插入图片描述

添加一组数据再绘制

myTree['no surfacing'][3]='maybe'
createPlot(myTree)

在这里插入图片描述

测试和存储分类器

测试算法:使用决策树执行分类

依靠训练数据构造了决策树之后,我们可以将它用于实际数据的分类,在执行数据分类时,需要使用决策树以及用于构造决策树的标签向量。然后程序比较测试数据与决策树上的数值,递归执行该过程,直到叶子节点;最后将测试数据定义为叶子节点所属的类型。

def classify(inputTree, featLabels, testVec):
    firstStr = list(inputTree.keys())[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    for key in list(secondDict.keys()):
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLables = classify(secondDict[key], featLabels, testVec)
            else:
                classLables = secondDict[key]
    return classLables
myDat, labels = createDataSet()
labels
['no surfacing', 'flippers']

myTree = retrieveTree(0)
myTree

classify(myTree, labels, [1, 0])
'no'
classify(myTree, labels, [1, 1])
'yes'

使用算法:决策树的存储

决策树的构造是很耗时的任务,但如果使用创建好的决策树则可以很快的解决分类问题,这里需要使用pickle模块把决策树保存到本地。

def storeTree(inputTree, filename):
    import pickle
    fw = open(filename, 'wb')
    pickle.dump(inputTree, fw)
    fw.close()

def grabTree(filename):
    import pickle
    fr = open(filename, 'rb')
    return pickle.load(fr)
storeTree(myTree, 'classifierStorage.txt')
grabTree('classifierStorage.txt')
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}, 3: 'maybe'}}

通过上述的代码,我们将分类器储存在本地,则不用每一次分类都重新学习一遍

实例:使用决策树预测隐形眼镜的类型

根据隐形眼镜的材质等信息预测患者需要的眼镜类型,流程如下

  1. 收集数据:提供的文本文件
  2. 准备数据:解析tab键分割的数据行
  3. 分析数据:快速检查数据正确性,使用createPlot()函数绘制树形图
  4. 训练算法:使用creatTree()函数
  5. 测试算法:编写测试函数验证决策树的正确率
  6. 使用算法:储存树的数据结构,以便下次使用
fr = open('./MLiA_SourceCode/machinelearninginaction/Ch03/lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
lensesTree = createTree(lenses, lensesLabels)
lensesTree
{'tearRate': {'reduced': 'no lenses',
  'normal': {'astigmatic': {'yes': {'prescript': {'myope': 'hard',
      'hyper': {'age': {'pre': 'no lenses',
        'young': 'hard',
        'presbyopic': 'no lenses'}}}},
    'no': {'age': {'pre': 'soft',
      'young': 'soft',
      'presbyopic': {'prescript': {'myope': 'no lenses',
        'hyper': 'soft'}}}}}}}}
createPlot(lensesTree)

在这里插入图片描述

通过观察树我们知道,医生最多只需要问四个问题就能确定患者需要佩戴的眼镜。

虽然决策树非常好的匹配了实验数据,但匹配的选项太多了,我们将这种问题称为过度匹配(overfitting),为了减少过度匹配问题,我们可以裁剪决策树,去掉一些不必要的叶子节点。

总结

本章使用的算法称为ID3,它无法处理数值型数据,如果特征太多,也会面临其它问题。

决策树分类器就像带有终止块的流程图,终止块表示分类结果。开始处理数据集时,我们首先需要测量集合中数据的不一致性,也就是熵,然后寻找最优方案划分数据集,知道数据集中的所有数据属于同一分类。ID3可以划分标称型数据集。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值