Union-Find 算法实现

本文详细介绍了Union-Find算法,包括其在动态连通性问题中的应用,并提供了具体的代码实现,帮助读者深入理解该算法的工作原理。
摘要由CSDN通过智能技术生成

Union-Find

问题描述:
给定一个n个序列的对象,有两种操作:
     -Union command:连接两个对象;
     -Find/connected query:两个对象是否连接(有路径)

算法实现方式

1.用一个数组保存着每个对象所在的connected component,这种方式可以快速进行FIND,但是在union操作时需要遍历整个对象数组
2.利用树的观点,在数组中保存每个对象节点的parent,这个每个connected component就是一棵树,这种方式union很高效,只需要更新相应节点的parent即可,但是在find的时候可能就会遍历整个树,特别是当一棵树比较高的时候。
3.在上述2中实现union(p,q)的时候,我们用一种特定的方式将p所在的树的置为q所在树的孩子,没有考虑到树的大小,就会导致严重失衡的情况。Weighted quick-union 引入一个新的数组来保存每棵树的尺寸,总是将小树链入到大树下,实现相对的平衡。
4.利用path compression进一步对上述算法进行优化,在每一次root操作的时候,不单单只是追溯查询一个节点的根,而是动态的将其根节点往上推进。从而使得           component tree 越来越平坦化。  如下要查询节点6的根节点,在查询的最后会更新6直接指向根节点。

接下来会把3,1分别指针指向root

具体代码

--------1
//这种方式可以快速判断是否相连,但是union操作需要遍历整个对象数组
public  class  QuickFindUF {
      // 这个数组保存着这个N个节点的所在分组
      private  int []  id  ;

      public  QuickFindUF(  int  n) {
            id  =  new  int  [n];
            for  ( int  i = 0; i < n; i ++) {
                id [ i] = i ;
          }
     }

      public  boolean  find( int  p,  int  q) {
            return  id  [p] ==  id  [q];
     }

      // 连接p,q节点的时候,要将p所在component中的所有节点的id更新
      public  void  union( int  p,  int  q) {
            int  pid =  id  [p];
            int  qid =  id  [q];
            for  ( int  i = 0; i <  id . length ; i++) {
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值