软核科普系列:用python帮你建立自己的投资组合

本文介绍了如何利用Python和马科维兹的均值方差法来构建投资组合,包括理论背景、计算方法和实操步骤。通过Tushare获取股票数据,计算期望收益率和协方差矩阵,绘制有效边界,寻找最优投资比例,同时也探讨了该理论的局限性。
摘要由CSDN通过智能技术生成

听说金融量化很火,作为码农圈和金融圈的跨圈层人士,码哥想开一个软核科普系列,和大家一起探索如何用python做投资分析。

今天的话题是如何建立投资组合。组成一个投资组合一般都要回答两个问题:1)投资什么 2)每个资产的比例是多少。

大部分人可能在主观上可以回答第一个问题,但对于每个资产的投资比例具体是多少,是否有一套可量化的方法在背后呢?码哥今天就带大家用python套用经典的马科维兹-均值方差法来计算投资组合比例。

这篇文章会有大量干货预警!主要分为三个部分

1、马科维兹的理论以及均值方差法是什么

2、用python实操(仅供演示,不提供实际投资建议)

3、理论的局限性

一、马科维兹的理论以及均值方差法是什么

哈里马科维茨(Harry M. Markowitz),1927年8月24日生于美国伊利诺伊州。1952年,马科维茨在《金融杂志》上发表题为《资产组合选择——投资的有效分散化》一文,该文堪称现代金融理论史上的里程碑,标志着现代组合投资理论的开端。1990年他也因为这个理论获得诺贝尔经济学奖。

在这篇论文中马科维兹认为,在一定的前提下,可以利用股票的期望收益率和方差找到一条“有效边界”。这条“有效边界”代表着一定预期收益率下风险最小的组合,也代表着相同风险下,收益率最高的组合。

当然,这个理论有几个非常重要的前提和假设:

1、投资者都是完全理性,并且厌恶风险的

2、投资者做投资决策只关心两件事:期望收益率和风险。风险体现在证券的波动率,也就是方差上。投资者仅用这两个指标就可以做出投资决策。

3、投资者事先知道投资收益率的概率分布,并且期望收益率满足正态分布的条件

组合的期望收益率

由于期望收益率满足正态分布,所以整个组合的期望收益率是组合里每个资产的预期收益率的加权平均的收益率,权数是每个资产所占的比例。

举个例子:

A股票的期望收益率为10%,B股票为5%。你的组合中A股票占比50%,B股票占比50%,则你的组合的期望收益率是10%*50%+5%*50%=7.5%。

组合的风险

正如假设的那样,组合的风险体现在收益率的波动性上。这里的波动性会有两个组成部分:1)每个资产自身的收益率波动性(收益率的方差)2)资产之间的联动性风险,即资产之间的协方差

对于每个资产来说,自身收益率的波动性(收益率的方差)越大,说明实际收益率偏离预期收益率幅度越大,风险就越高。对于组合中任意两个资产来说(假如都是股票),他们股票价格的变动在一定程度上是有关联性的,因为他们不可避免会受到相同的外部系统风险的影响。举个例子:沪深300</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值