Python使用历史数据模拟法计算投资组合VaR(数据来源为Tushare)

本文展示了如何用Python和Tushare库获取股票历史数据,计算投资组合的收益率,进而运用历史数据模拟法计算99%置信度下,持有5天的VaR。代码详细解释了数据获取、处理和VaR计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python如何使用历史数据模拟法计算投资组合VaR?(数据来源为Tushare)

本文数据可以点赞关注私信我获取!

VaR(Value at Risk)是一种常用的风险管理指标,用于衡量投资组合在特定时间内的最大可能损失。历史数据模拟法是一种计算VaR的方法,本文将介绍如何使用Tushare数据库获取“中国工商银行”和“兴业银行”2022年10月1日至2023年3月31日期间每个交易日的收盘价格数据,假设两个股票的投资额分别是3/4和1/4,如果目前两种股票的市值共计50万元人民币,置信度为99%,利用历史数据模拟法计算该投资组合持有期为5天的VaR。

步骤1:获取数据

首先,需要获取股票数据。我们以中国工商银行和兴业银行为例,获取它们在2022年10月1日至2023年3月31日期间每个交易日的收盘价格数据。代码如下:

import pandas as pd
import numpy as np
import tushare as ts
from scipy.stats import norm

# Tushare设置
pro = ts.pro_api('你的token') #你的token

start_date = '20221001' #起始日期
end_date = '20230331' #结束日期

code_list = ['601398.SH','601166.SH'] #你需要的股票代码,上海的是.SH,深圳的是.SZ

for i in code_list: #遍历list
    df = pro.daily(ts_code=i, start_date=start_date, end_date=end_date) #tushare获取股票日度信息
    df = df[['ts_code','trade_date','close']]  #只保留需要的数据
    df.to_csv(f'{
     i}.csv',encoding='gbk')  #导出为csv文件

以上代码中,我们使用了Tushare获取股票数据,并将数据导出为csv文件。

步骤2:处理数据

获取数据后,需要对数据进行处理。首先,我们需要将数据框中的日期列转换为日期格式,并将数据框中的收盘价列转换为浮点数。代码如下:

# 读取数据文件
df1 = pd.read_csv('601398.SH.csv')  #工商银行
df2 = pd
Jupyter Notebook是一个交互式的笔记本环境,常用于数据分析、科学计算以及机器学习等领域的演示和实验。要使用它实现蒙特卡洛模拟法(Monte Carlo Simulation)来计算投资组合的方差(Value at Risk, VaR),可以按照以下步骤操作: 1. **安装必要库**: 首先确保已安装了NumPyPandas和Matplotlib等Python数据处理和可视化库。如果没有,可以使用`pip install numpy pandas matplotlib`命令。 2. **导入所需模块**: ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt ``` 3. **创建投资组合**: 设定各个资产的期望收益、标准差和其他相关信息,例如: ```python expected_returns = [0.05, 0.10, -0.03] # 各资产期望收益率 cov_matrix = np.array([[0.16, 0.08, 0.04], [0.08, 0.21, 0.05], [0.04, 0.05, 0.12]]) # 资产之间的协方差矩阵 num_assets = len(expected_returns) ``` 4. **模拟随机路径**: 使用numpy生成随机数,模拟资产价格变化。通过生成一个正太分布的大量路径来模拟未来可能的价格变动情况: ```python random_weights = np.random.dirichlet(np.ones(num_assets), size=10000) # 占比均匀的投资组合权重 portfolio_values = (random_weights * np.random.multivariate_normal(mean=expected_returns, cov=cov_matrix, size=10000)).sum(axis=1) ``` 5. **计算VaR**: 根据给定置信水平(如95%),计算对应的风险价值,即预期损失: ```python confidence_level = 0.95 portfolio_var = np.percentile(portfolio_values, 100 - confidence_level * 100) ``` 6. **结果展示**: 可以使用matplotlib绘制VaR值的分布图: ```python plt.hist(portfolio_values, bins='auto') plt.axvline(portfolio_var, color='red', linestyle='dashed', linewidth=2, label=f'VaR ({confidence_level*100}%)') plt.legend() plt.show() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

strangequark

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值