王树尧老师运筹学课程笔记 04 线性代数基础

第4讲 线性代数基础

线性代数是通过一系列的手段“折腾”方程组,抽取其中的系统信息。

线性代数的目的

解线性方程组(线性方程即未知数的次数是1的方程)。

解线性方程组的步骤

  1. 判断是否有解
  2. 如何求解
  3. 如何表示解

线性代数与解析几何的几个经典想法

对于二元线性方程组 { a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}=b_{2}\end{array}\right. {a11x1+a12x2=b1a21x1+a22x2=b2,该方程组的两个方程表示了空间中的两条直线。如果两条直线相交,方程组就有解,且方程组的解就是两条直线的交点;而如果两条直线平行,方程组就无解,两条直线系数对应成比例时平行。

对于三元线性方程组 { a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 \left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2}\end{array}\right. {a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2,该方程组的两个方程表示了空间中的两个平面。如果两个平面相交,则两个平面相交的线为方程组的解,方程组有无穷多个解。如果两个平面平行,方程组就无解,两个平面系数对应成比例时平行。

对于三元线性方程组 { a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3 \left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2}\\ a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}\end{array}\right. a11x1+a12x2+a13x3=b1a21x1+a22x2+a23x3=b2a31x1+a32x2+a33x3=b3,该方程组的三个方程表示了空间中的三个平面。三个平面可以两两相交于同一点,这同一点就是这三个方程组的唯一解;也可以两两相交于同一线,这就是无穷多解的情况;也可以至少两个平面重合且与第三个平面相交(含三个平面都重合的情况),这也是无穷多解的情况;当然,至少有一个平面不与其它平面相交(如三个平面相互平行,或者两个平面重合并与第三个平面平行的情况),或者三个平面的交线既不重合也不相交于同一点,那这就是无解了。

解线性方程组的方法论

受到解低维线性方程组的启发,更一般地来说,对于 n n n元线性方程组 { a 11 x 1 + a 12 x 2 + a 13 x 3 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 + ⋯ + a 2 n x n = b 2 … a n 1 x 1 + a n 2 x 2 + a n 3 x 3 + ⋯ + a n n x n = b n \left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\dots+a_{1n} x_{n}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\dots+a_{2n} x_{n}=b_{2}\\\dots\\ a_{n1} x_{1}+a_{n2} x_{2}+a_{n3} x_{3}+\dots+a_{nn} x_{n}=b_{n}\end{array}\right. a11x1+a12x2+a13x3++a1nxn=b1a21x1+a22x2+a23x3++a2nxn=b2an1x1+an2x2+an3x3++annxn=bn,要解方程组,核心思想就是要提取这些方程组的系统信息,然后用消元方法解方程组。利用线性代数中的矩阵和矩阵的乘法,就能很好地将方程组的系统信息提取出来。

矩阵

如何看待矩阵

对于二元线性方程组 { a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 \left\{\begin{array}{l}a_{11} x_{1}+a_{12} x_{2}=b_{1} \\ a_{21} x_{1}+a_{22} x_{2}=b_{2}\end{array}\right. {a11x1+a12x2=b1a21x1+a22x2=b2,其系数矩阵为 [ a 11 a 12 a 21 a 22 ] \begin{bmatrix} a_{11}& a_{12}\\ a_{21}& a_{22} \end{bmatrix} [a11a21a12a22],要判断该线性方程组是否有解,只需要判断其系数矩阵的一个行向量(或列向量)是否可以被另一个行向量(或列向量)线性表示。

对于 n n n元线性方程组也是类似的,要判断该线性方程组是否有解,只需要判断其系数矩阵的一个行向量(或列向量)是否可以被剩余的行向量(或列向量)线性表示。将所有能被剩余的向量线性表示的向量都替换为0,而不能被剩余的向量线性表示的向量的个数即为矩阵的秩,代表了矩阵的本质属性。然后可以根据矩阵的秩讨论线性方程组解的情况,具体可以参照线性代数中的相关知识。

矩阵秩的求法

可以对矩阵做初等行变换,将其化简为阶梯形矩阵求矩阵的秩。

对于形状为 n × m n\times m n×m的矩阵其秩 R ≤ m i n ( n , m ) R\le min(n,m) Rmin(n,m)

矩阵的基

根据矩阵的秩 R R R在矩阵中找一个 R R R阶不为0的行列式(这样的行列式至少可以找到一个),将行列式中的元素按顺序排列成一个矩阵,这个矩阵就是原矩阵的一个基。

矩阵的逆

矩阵逆的求法

用初等行变换求逆矩阵。对矩阵 ( A , E ) (A,E) (A,E)进行初等行变换,使其变成 ( E , B ) (E,B) (E,B),则 B B B就是 A A A的逆矩阵 A − 1 A^{-1} A1

矩阵逆的性质

A ⋅ A − 1 = E A\cdot A^{-1}=E AA1=E

行列式

行列是什么

行列式是一种运算法则,和 + 、 − +、- +类似,可以算出一个数。当然行列式也可以看作是一个数。

行列式的几何意义

对于行列式 ∣ a 1 a 2 b 1 b 2 ∣ \begin{vmatrix} a_1& a_2\\ b_1& b_2 \end{vmatrix} a1b1a2b2,其对应的矩阵为 [ a 1 a 2 b 1 b 2 ] \begin{bmatrix} a_{1}& a_{2}\\ b_{1}& b_{2} \end{bmatrix} [a1b1a2b2],其行向量 α 1 = \alpha_1= α1= [ a 1 a 2 ] \begin{bmatrix} a_{1}& a_{2}\end{bmatrix} [a1a2] α 2 = \alpha_2= α2= [ b 1 b 2 ] \begin{bmatrix} b_{1}& b_{2}\end{bmatrix} [b1b2],将这两个向量画在下图中。

img

可以发现图中黄色平行四边形的面积 S = − a b s i n ( α − β ) S=-absin(\alpha-\beta) S=absin(αβ),其中各符号的含义如图中标注所示。另外顺时针面积为负,逆时针面积为正,这是个有向面积,由于图中画的是顺时针,所以前面还要带一个负号,才是实际面积。然后化简得 S = a 1 b 2 − a 2 b 1 S=a_1b_2-a_2b_1 S=a1b2a2b1

综上,二阶行列式的几何意义是平行四边形的面积。

三阶行列式的几何意义是平行六面体的体积。

n n n阶行列式的几何意义是 n n n维超立方体的体积。

因此,如果行列式的值为0,则其对应的矩阵有多余的(不独立)的向量;反之,则其对应的矩阵是满秩的。

总结

线性代数的目的是要解线性方程组,可以与解析几何巧妙地结合。

可以从线性方程组的系数中提取出信息,将其构建为矩阵,并且将未知数也表示为一个矩阵,就可以用矩阵的乘法表示线性方程组。

矩阵中独立的(线性无关的)向量个数是矩阵的秩,反应了矩阵的本质属性。

根据矩阵的秩 R R R在矩阵中找一个 R R R阶不为0的行列式,将行列式中的元素按顺序排列成一个矩阵,这个矩阵就是原矩阵的一个基。

行列式是一种运算法则,其几何意义是两个向量构成的平行四边形的面积(以二阶行列式为例)。

  • 13
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值