总结:机器学习算法之PAA与PSO

本文介绍了在机器学习中处理长序列数据的一种策略——时间序列降维。通过使用PAA(分段聚合近似)算法,可以将长序列转化为短序列,降低计算复杂性。然而,PAA可能会导致信息丢失,为此,文章提到了PSO(粒子群优化)算法作为补充,PSO旨在保留原始序列的重要特征,特别是斜率变化显著的点。这两种算法结合使用,可以在保持序列趋势的同时,有效减少数据量。
摘要由CSDN通过智能技术生成

一、背景介绍

我们知道,对于机器学习算法,一般训练的时间如果太短,可能导致训练效果不好,但是较长时间,比如一天,时间点又太多了,怎么办呢?

办法就是 采用时间序列降维的方式 把长序列映射为短序列 。之后的计算用短序列即可,数据量就会减少很多。具体减少多少,需要评估效果,比如两个点缩为一个点,则总数据量降低一倍,如果三个点合成一个,则降低三倍,以此类推。

下面介绍下一般的 采用时间序列降维算法。

二、PAA

PAA: 分段聚合近似 算法。即基于长序列数据,生成一条短序列数据,使得短序列数据大致和长序列数据的趋势相似。

三、PSO

PSO即 粒子群算法。是对PAA算法计算过程的补充。

由于PAA算法 会丢失一部分信息 ,比如下图:可能经过均值计算,得出的线和原始数据差别比较大。

up-60137a457e46bacbccde001a7193efa8f23.png

PSO算法大致是会去找斜率变化比较大的点,要求斜率较大点需要在拟合线的附近,这样原始序列的重要特征就被保留下来了。

参考:

时间序列异常检测(PAA及SAX方法)

优化算法——粒子群算法(PSO)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值