一、背景介绍
我们知道,对于机器学习算法,一般训练的时间如果太短,可能导致训练效果不好,但是较长时间,比如一天,时间点又太多了,怎么办呢?
办法就是 采用时间序列降维的方式 , 把长序列映射为短序列 。之后的计算用短序列即可,数据量就会减少很多。具体减少多少,需要评估效果,比如两个点缩为一个点,则总数据量降低一倍,如果三个点合成一个,则降低三倍,以此类推。
下面介绍下一般的 采用时间序列降维算法。
二、PAA
PAA: 分段聚合近似 算法。即基于长序列数据,生成一条短序列数据,使得短序列数据大致和长序列数据的趋势相似。
三、PSO
PSO即 粒子群算法。是对PAA算法计算过程的补充。
由于PAA算法 会丢失一部分信息 ,比如下图:可能经过均值计算,得出的线和原始数据差别比较大。
PSO算法大致是会去找斜率变化比较大的点,要求斜率较大点需要在拟合线的附近,这样原始序列的重要特征就被保留下来了。
参考: