POJ 2689 Prime Distance(筛选两次素数)

题意:给定两个数L,R(1≤L<R≤2 147 483 647),在[L,R]内找出相邻素数C1,C2使其距离最小,找出相邻素数C3,C4使其距离最大。若距离相同,选最初的一组。(R-L<1 000 000)。

分析:L和R的范围比较大,不能直接打表。根据基本素数判别法可知:正整数N是素数,当且仅当N不能被任何一个小于sqrt(N)的素数整除。如果N是一个合数,那么N必然存在一个小于sqrt(N)的素数因子。而sqrt(2 147 483 647)<50 000  所以可以打一个1~50 000的素数表F1,然后可以根据这个素数表可以打出1~2 147 483 647内任意区间的素数表F2.。

代码:

#include <cstdio>
#include <string.h>
#include <iostream>
#include <cmath>
using namespace std;

typedef long long int64;

bool isprime[1000005];
int prime[50001],nprime,use[1000005];

void doprime()
{
	long long i,j;
	prime[1]=2;
	nprime=1;
	for(i=1;i<50000;i+=2)
		isprime[i]=true;
	for(i=2;i<50000;i++)
	{
		if(isprime[i])
		{
			prime[++nprime]=i;
			for(j=i*i;j<=50000;j+=i)
				isprime[j]=false;
		}
	}
}

bool solve(int64 L,int64 R,int64 &a,int64 &b,int64 &c,int64 &d)
{
	int64 i,j,s;
	for(i=1;i<nprime;i++)
	{
		s=L/prime[i];
		while(s<=1 || s*prime[i]<L) s++;
		for(j=s*prime[i];j<=R;j+=prime[i])
			if(j-L>=0)
				isprime[j-L]=false;
	}
	int np=0;
	for(i=0;i<=R-L;i++)
	{
		if(isprime[i])
		{
			use[np++]=i+L;
		}
	}
	if(np<=1)
		return false;
		
	int dmax=-1,dmin=2147483647;
	for(i=0;i<np-1;i++)
	{
		if(use[i+1]-use[i]<dmin)
		{
			dmin=use[i+1]-use[i];
			a=use[i];
			b=use[i+1];
		}
		if(use[i+1]-use[i]>dmax)
		{
			dmax=use[i+1]-use[i];
			c=use[i];
			d=use[i+1];
		}
	}
	return true;
}

int main()
{
	doprime();
	int64 a,b,c,d;
	int64 L,R;
	while(scanf("%lld%lld",&L,&R)!=EOF)
	{
		if(L<=1) L++;
		memset(isprime,true,sizeof(isprime));
		if(solve(L,R,a,b,c,d))
			printf("%lld,%lld are closest, %lld,%lld are most distant.\n",a,b,c,d);
		else
			printf("There are no adjacent primes.\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值