题意:给定两个数L,R(1≤L<R≤2 147 483 647),在[L,R]内找出相邻素数C1,C2使其距离最小,找出相邻素数C3,C4使其距离最大。若距离相同,选最初的一组。(R-L<1 000 000)。
分析:L和R的范围比较大,不能直接打表。根据基本素数判别法可知:正整数N是素数,当且仅当N不能被任何一个小于sqrt(N)的素数整除。如果N是一个合数,那么N必然存在一个小于sqrt(N)的素数因子。而sqrt(2 147 483 647)<50 000 所以可以打一个1~50 000的素数表F1,然后可以根据这个素数表可以打出1~2 147 483 647内任意区间的素数表F2.。
代码:
#include <cstdio>
#include <string.h>
#include <iostream>
#include <cmath>
using namespace std;
typedef long long int64;
bool isprime[1000005];
int prime[50001],nprime,use[1000005];
void doprime()
{
long long i,j;
prime[1]=2;
nprime=1;
for(i=1;i<50000;i+=2)
isprime[i]=true;
for(i=2;i<50000;i++)
{
if(isprime[i])
{
prime[++nprime]=i;
for(j=i*i;j<=50000;j+=i)
isprime[j]=false;
}
}
}
bool solve(int64 L,int64 R,int64 &a,int64 &b,int64 &c,int64 &d)
{
int64 i,j,s;
for(i=1;i<nprime;i++)
{
s=L/prime[i];
while(s<=1 || s*prime[i]<L) s++;
for(j=s*prime[i];j<=R;j+=prime[i])
if(j-L>=0)
isprime[j-L]=false;
}
int np=0;
for(i=0;i<=R-L;i++)
{
if(isprime[i])
{
use[np++]=i+L;
}
}
if(np<=1)
return false;
int dmax=-1,dmin=2147483647;
for(i=0;i<np-1;i++)
{
if(use[i+1]-use[i]<dmin)
{
dmin=use[i+1]-use[i];
a=use[i];
b=use[i+1];
}
if(use[i+1]-use[i]>dmax)
{
dmax=use[i+1]-use[i];
c=use[i];
d=use[i+1];
}
}
return true;
}
int main()
{
doprime();
int64 a,b,c,d;
int64 L,R;
while(scanf("%lld%lld",&L,&R)!=EOF)
{
if(L<=1) L++;
memset(isprime,true,sizeof(isprime));
if(solve(L,R,a,b,c,d))
printf("%lld,%lld are closest, %lld,%lld are most distant.\n",a,b,c,d);
else
printf("There are no adjacent primes.\n");
}
return 0;
}