Tensorflow卷积操作中Padding的几种方式

本文详细介绍了在使用卷积神经网络时,如何根据不同的填充方式(VALID和SAME)来计算输出矩阵的尺寸。文章提供了计算公式,并解释了步长、卷积核尺寸等因素对输出尺寸的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设:

输入矩阵的尺寸为: w * w
卷积核的尺寸为: f * f
步长为: s
输出矩阵的尺寸: new_w * new_w

注意, 这里默认所有长宽都相等; 不相等情况下, 推导方式是一样的.

VALID 方式

new_w = (w - s + 1) / 2    #向上取整

VALID方式不会在原有输入矩阵的基础上添加新的值,输出矩阵的大小直接按照公式计算即可

SAME 方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值