前一节的内容对卷积网络的padding,stride等概念有了介绍,这一节会需要回顾一下其中重要的几个概念包括池化(Pooling)、过采样(upsample)以及激活函数ReLU。首先我们根据一张经典的LeNet5网络来了解下降维也就是下采样。
可以看到,两个subsampling层将原来输入的28*28的图像数据见魏晨了14*14和5*5;
那么下采样是怎么实现的呢,实际上这个操作的执行就是池化,如上图所示,池化主要分为两种average个Max,在这里我们的卷积核大小设置为2*2,步长stride=2,所以原始输入的4*4的图像会被下采样成一个2*2的图像,这样就会有2*2一共4个元素,那么区别开卷积操作,池化是一个二次采样的过程,并不会有一个权值矩阵进行矩阵的乘法。所以分别对应的两种采样的方式是对原来kernel size大小的观察域里取均值或者是最大值,这样降低了维度也一定程度上保留了原来图像包含的信息。