Tensorflow 卷积神经网络(三)池化与采样

本文介绍了卷积网络中的下采样(池化)和上采样技术,通过实例展示了2*2池化和 stride=1 的情况。下采样通过平均池化和最大池化降低维度,而上采样通过等值复制填充增加维度。此外,还讨论了ReLU激活函数在解决梯度消失和爆炸问题上的作用。
摘要由CSDN通过智能技术生成

前一节的内容对卷积网络的padding,stride等概念有了介绍,这一节会需要回顾一下其中重要的几个概念包括池化(Pooling)、过采样(upsample)以及激活函数ReLU。首先我们根据一张经典的LeNet5网络来了解下降维也就是下采样。

可以看到,两个subsampling层将原来输入的28*28的图像数据见魏晨了14*14和5*5;

那么下采样是怎么实现的呢,实际上这个操作的执行就是池化,如上图所示,池化主要分为两种average个Max,在这里我们的卷积核大小设置为2*2,步长stride=2,所以原始输入的4*4的图像会被下采样成一个2*2的图像,这样就会有2*2一共4个元素,那么区别开卷积操作,池化是一个二次采样的过程,并不会有一个权值矩阵进行矩阵的乘法。所以分别对应的两种采样的方式是对原来kernel size大小的观察域里取均值或者是最大值,这样降低了维度也一定程度上保留了原来图像包含的信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值