【单变量输入多步预测】基于TCN-GRU-Attention的风电功率预测研究(Matlab代码实现)

         💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、TCN-GRU-Attention模型概述

三、基于TCN-GRU-Attention的风电功率预测模型构建

四、研究优势与挑战

优势:

挑战:

五、未来展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于TCN-GRU-Attention的风电功率预测研究,在单变量输入多步预测的背景下,具有其独特的优势和应用价值。以下是对该研究的详细探讨:

一、研究背景与意义

风能作为一种清洁、可再生的能源,其发电过程受多种自然因素影响,如风速、风向、温度等,导致风电功率具有显著的波动性和不确定性。准确的风电功率预测对于电力系统的调度、优化风电场的运行以及促进风电的并网消纳具有重要意义。单变量输入多步预测是指仅使用某一单一变量(如风速)的历史数据,来预测未来多个时间点的风电功率值。

二、TCN-GRU-Attention模型概述

TCN-GRU-Attention模型结合了时间卷积网络(TCN)、门控循环单元(GRU)和注意力机制(Attention)的优势,旨在提高风电功率预测的准确性和稳定性。

  1. 时间卷积网络(TCN)
    • TCN通过一维卷积层处理序列数据,能够有效地捕捉到时间序列中的局部特征,同时减少了计算复杂度,并有助于防止梯度消失问题。
    • 相比传统的RNN和LSTM,TCN具有更好的并行计算能力,能够更快地处理长序列数据。
  2. 门控循环单元(GRU)
    • GRU是RNN的一种变体,通过引入更新门和重置门,能够处理长期依赖关系,并保留对重要信息的记忆。
    • 相比LSTM,GRU具有更少的参数和更快的训练速度,同时保持了良好的性能。
  3. 注意力机制(Attention)
    • 注意力机制能够集中关注输入序列中最重要的部分,增强模型对关键特征的敏感度,从而提高预测精度。
    • 通过引入注意力机制,模型能够自动学习并调整不同时间步长上信息的权重,使预测结果更加准确。

三、基于TCN-GRU-Attention的风电功率预测模型构建

模型构建主要包括以下几个步骤:

  1. 数据收集与预处理
    • 收集风电场的历史风速数据以及相应的风电发电量数据。
    • 对数据进行清洗、去噪、插值等预处理操作,以消除异常值和缺失值对预测结果的影响。
    • 对数据进行归一化处理,以消除不同量纲对模型训练的影响。
  2. 特征提取
    • 使用TCN对预处理后的时间序列数据进行特征提取,获取与风电功率相关的时序特征。
  3. 时序依赖关系捕捉
    • 将TCN提取的特征输入到GRU中,利用GRU捕捉这些特征之间的时序依赖关系。
  4. 注意力机制增强
    • 在GRU的输出层引入注意力机制,通过计算不同时间步长上信息的权重,提升模型对关键特征的敏感度。
  5. 模型训练与评估
    • 使用训练集数据对TCN-GRU-Attention模型进行训练,通过反向传播算法更新网络参数。
    • 使用测试集数据对训练好的模型进行评估,计算预测误差(如均方误差MSE、平均绝对误差MAE等),以评估模型的预测性能。

四、研究优势与挑战

优势:
  1. 高精度预测:TCN-GRU-Attention模型能够同时捕捉风电功率数据中的时空特征和关键信息,实现高精度的预测。
  2. 适应性强:该模型能够处理非线性、高维的时序数据,适用于复杂的风电预测场景。
  3. 稳定性好:通过引入GRU的门控机制和Attention机制,模型在处理时序数据时具有更好的稳定性。
挑战:
  1. 计算复杂度:TCN-GRU-Attention模型的计算复杂度较高,需要较长的训练时间和较高的计算资源。
  2. 数据依赖性:模型的预测性能高度依赖于输入数据的质量和数量。如果数据存在缺失或异常值,可能会对预测结果产生较大影响。
  3. 参数调优:模型的性能受参数影响较大,需要进行细致的参数调优工作以获得最佳预测效果。

五、未来展望

随着深度学习技术的不断发展,基于TCN-GRU-Attention的风电功率预测研究将不断深入和完善。未来,可以通过引入更先进的算法和技术(如Transformer、图神经网络等)对模型进行优化,以进一步提高预测精度和训练效率。同时,针对实际风电场的不同特点和需求,开展更加定制化的模型设计和研究也是未来的重要方向。

📚2 运行结果

部分代码:

layers0 = [ ...
    % 输入特征
    sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置
    sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。
    % CNN特征提取
    convolution2dLayer([2,1],4,'Stride',[1,1],'name','conv1')  %添加卷积层,64,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长
    batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸
    reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题
      % 池化层
    maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式
    % 展开层
    sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复
    %平滑层
    flattenLayer('name','flatten')
    
    lstmLayer(25,'Outputmode','last','name','hidden1') 
    dropoutLayer(0.2,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入

    fullyConnectedLayer(outdim,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %
    regressionLayer('Name','output')    ];
    
lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');


%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 150, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值