👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
本代码用于灵敏性分析的方法模型。
一、灵敏性分析概述
灵敏性分析是研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。通过灵敏性分析,可以了解哪些参数对系统或模型的影响较大,从而为决策提供依据。
二、灵敏性分析的应用
灵敏性分析在多个领域都有广泛的应用,包括但不限于:
- 金融领域:用于评估投资组合的风险敏感性,分析不同因素对投资组合价值的影响。
- 环境领域:用于评估气候变化对生态系统的影响,分析不同因素对生态系统的稳定性的影响。
- 医疗领域:用于评估不同因素对疾病发病率和治疗效果的影响,以优化治疗方案。
三、灵敏性分析的方法模型
1. 单参数灵敏性分析
单参数灵敏性分析是指将模型中的一个参数进行单独调整,观察输出结果的变化情况。这种方法可以帮助我们了解单个参数对模型结果的影响程度。
2. 多参数灵敏性分析
多参数灵敏性分析则是将模型中的多个参数同时进行调整,以观察各个参数的不同组合对输出结果的影响。这种方法可以更加全面地了解模型参数对结果的影响,但计算量较大。
3. 灵敏度系数法
灵敏度系数是描述系统输出对输入参数变化敏感程度的一个量化指标。通过计算灵敏度系数,可以了解不同参数对系统输出的影响程度,从而确定哪些参数是关键的。
4. 灵敏度模式
灵敏度模式是一种通过估算投资市场中的敏感性因子来得出投资资产风险的模型。该模型中的参数因子包括股票指数、汇率、大宗商品价格、利率等。针对具体不同的投资方向,灵敏度模型的类型也不同。例如,在养老金入市的分析中,常见的灵敏度类型为贝塔系数,该模型建立在投资对象与大盘指数的研究上,其绝对值的大小直接反映了收益幅度与大盘的波动性差异。
四、灵敏性分析的实施步骤
- 明确分析目标和问题:确定需要进行灵敏性分析的具体问题和目标。
- 确定模型参数和变量:明确模型中的输入参数和输出变量。
- 选择分析方法:根据分析目标和问题,选择合适的灵敏性分析方法,如单参数灵敏性分析、多参数灵敏性分析等。
- 实施分析:按照选定的方法,对模型进行灵敏性分析,观察输出结果的变化情况。
- 结果解释和应用:根据分析结果,解释各参数对模型结果的影响程度,并提出相应的决策建议。
五、注意事项
- 参数选择:在进行灵敏性分析时,应确保所选参数对模型结果具有重要影响。
- 数据准确性:输入数据应尽可能准确,以减少分析结果的误差。
- 模型验证:在进行分析之前,应对模型进行验证,确保其能够准确反映实际情况。
六、结论
灵敏性分析是一种重要的分析方法,可以帮助我们了解系统或模型对参数变化的敏感程度,从而为决策提供依据。在实际应用中,应根据具体问题选择合适的灵敏性分析方法和模型,并严格按照实施步骤进行分析。同时,还应注意参数选择、数据准确性和模型验证等方面的问题,以确保分析结果的准确性和可靠性。
📚2 运行结果
部分代码:
clear all
n = 1000; % size of sample (n); number of simulations/runs
LHS_params = initialize_params(n);
R_0 = func_output(n, LHS_params);
R_0 = R_0';
% szy: need to get data from each params to use func_prcc()
numberParams = size(LHS_params, 2); % get number of params
LHS_matrix = [];
for i=1:numberParams
LHS_matrix = [LHS_matrix LHS_params(i).data];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sensitivity Analysis Results:
% PRCC (sensitivity indexes of R_0 with respect to each parameter):
PRCC_R0 = function_Prcc(R_0, LHS_matrix);
% plots:
plot_hist_paramsAndOutput(LHS_params, R_0);
plot_PRCC(PRCC_R0, numberParams);
部分代码:
clear all
n = 1000; % size of sample (n); number of simulations/runs
LHS_params = initialize_params(n);
R_0 = func_output(n, LHS_params);
R_0 = R_0';
% szy: need to get data from each params to use func_prcc()
numberParams = size(LHS_params, 2); % get number of params
LHS_matrix = [];
for i=1:numberParams
LHS_matrix = [LHS_matrix LHS_params(i).data];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sensitivity Analysis Results:
% PRCC (sensitivity indexes of R_0 with respect to each parameter):
PRCC_R0 = function_Prcc(R_0, LHS_matrix);
% plots:
plot_hist_paramsAndOutput(LHS_params, R_0);
plot_PRCC(PRCC_R0, numberParams);
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]姚宏亮,苌健,王浩,李俊照.灵敏性分析下的因果网络参数的扰动学习研究[J].计算机科学与探索,2012,6(02):165-174.