Deepseek在公安行业应用思考——我用AI做诈骗

一、引言

随着时代进步和科技的发展,诈骗分子也在不断更新他们的手段。如今,他们甚至利用大模型来编写诈骗剧本,实施更加精准和复杂的诈骗行为,还有使用大模型来生成诱导性提示词、来辅助陪聊。

一般诈骗分子会先购买数据,然后对目标群体进行精准画像,通过大数据分析了解其兴趣爱好、消费习惯等信息。然后,利用大模型生成针对性的诈骗剧本,这些剧本可能涉及虚假投资、网络交友、虚假购物、裸聊约炮敲诈等多种场景。例如,利用大模型生成的剧本可能会以“投资理财”为幌子,通过精心设计的话术构建信任关系诱导受害者投入资金。

那么,今天我们就来模拟一下诈骗窝点构建本地化的剧本生成、辅助陪聊系统。DeepSeek+AnythingLLM打造自己大模型知识库

二、环境配置信息

(一)电脑基础信息:

(二)显卡信息:GeForce GTX 泰坦

(三)模型软件

  • Ollama+DeepSeek+AnythingLLM
  • DeepSeek模型我选择:deepseek-r1:8b 

安装顺序:(安装教程不在赘述网上一抓一把)

  1. 安装Ollama
  2. 下载DeepSeek模型
  3.  安装AnythingLLM

三、构建教程

(一)剧本准备(这里不得不拿出的我少妇杀手宝典了,来源都是正规渠道

(二)导入到AnythingLLM

构建本地知识库,全部导入知识库。

 

四、模型应用

(一)知识库推理测试

测试发现,已经能够命中导入的话术剧本,并且能够提供基于知识库推理出来的新的话术,避免与其他窝点购买的话术剧本出现重复,被对象发现。

接下来我们可以通过此模型来根据人员的画像信息和自己入金平台编写新的剧本,减少了人员思考,想破脑袋。

(二)剧本编写

模型提示词要清楚,定位清晰,让其规划明细;可以先列大框架,然后逐步细化内容,包夸过程中的人物心里分析,什么时间点适合送礼、什么时间点适合问候、安慰 提供情绪价值,骗后如何安抚,信息如何销毁转移等,在这里我们简单模拟一下,聪明的你肯定脑袋一亮会有更多奇特的想法,可以表达在评论区。

 

1、需求指令:

2、引导部分回答

 全部剧本内容这里就不放出来了。

3、骗后安抚

(三)思考

通过使用发现确实可以使用,减少不少人力,但是还存在一定的问题,如果我在扩大模型,优化提示词,针对性的细化补充会怎么样?

科技的发展无疑为人类社会带来了巨大的便利和创新,但同时也带来了新的挑战和风险。在享受科技带来的好处的同时,我们需要加强法律监管、提升公众防范意识,并不断优化技术手段,以应对AI诈骗等新兴威胁。只有这样,我们才能在科技发展的道路上走得更远、更安全。

提醒广大网友:交友需谨慎。

转载需标注来源,谢谢。

 

 

 

 

### DeepSeek IT相关信息 #### 技术特点 DeepSeek集成了多种先进的人工智能技术,能够为不同行业提供定制化的解决方案。该平台不仅支持自然语言处理(NLP),计算机视觉(CV),以及语音识别等多领域任务,还提供了大量的预训练模型和实用工具,使得用户可以迅速搭建并优化自己的AI应用程序[^2]。 对于公安行业的特定需求,DeepSeek通过融合专家经验、法律法规、案件详情等多种信息源,利用大型模型自动抽取有价值的情报,整理事件脉络,并给出合理的判断指导,从而提高警方人员的工作效率及其决策质量[^1]。 此外,在最新版本DeepSeek-V3中实现了顶级性能表现,这得益于其内部算法改进和技术革新所带来的显著效果。这些进步让开发者能够在更短时间内完成复杂计算任务的同时降低了资源消耗成本[^3]。 ```python # 示例:使用DeepSeek进行简单的NLP任务 from deepseek_nlp import TextAnalyzer analyzer = TextAnalyzer() result = analyzer.analyze("这是一个测试句子") print(result) ``` #### 应用场景 在实际应用方面,除了上述提到的公共安全领域外,DeepSeek同样适用于其他众多场合: - **企业级数据分析**:借助强大的机器学习功能帮助企业挖掘潜在商业价值; - **医疗健康辅助诊断**:结合医学影像资料与病历记录实现精准诊疗建议; - **教育个性化推荐系统**:依据学生的学习行为模式为其量身打造课程计划; 以上只是部分例子而已,实际上任何涉及到大量非结构化数据处理的地方都可以考虑采用此款产品来进行智能化升级转型。 #### 开发者文档 为了方便广大程序员更好地理解和掌握如何有效运用这一强大工具,官方团队精心准备了一份详尽的技术手册——《DeepSeek开发者指南》。这份文档涵盖了从环境安装配置到具体API接口调用方法在内的方方面面内容,无论是初学者还是有一定基础的经验人士都能从中受益匪浅。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xzzd_jokelin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值