如何使用python获取图像datasets的标签

在我们训练神经网络的时候,需要有标签的数据,通过以下方法获取:

数据文件夹格式如下:

test下有三个类别:1 2 3

import os

path = "F:/python/pytorch/vgg/data2/test"  # 图片集路径
classes = [i for i in os.listdir(path)]
files = os.listdir(path)
test = open("test.txt", 'w')
for i in classes:
    s = 0
    for imgname in os.listdir(os.path.join(path, i)):
        name = os.path.join(path, i) + '\\' + imgname + '   ' + str(classes.index(i)) + '\n'
        test.write(name)
        s += 1

test.close()

只需要修改路径,以及test等名称,生成文件在工程目录下。

结果如下:包括路径和类别。

 

Pythondatasets模块是用来读取数据集的。在给出的引用内容中,datasets.py文件是用来读取数据集的,可以将训练集划分为测试集和验证集。chuli.py文件用来验证数据集的读取正确性。model.py文件中包含了ResNet34的代码。train.py文件用来训练数据集,并绘制训练集和验证集的损失和准确率图表。 在使用datasets模块时,需要定义自己的数据集类,并继承自Dataset类。这个自定义的数据集类需要重写初始化方法和getitem方法。初始化方法用来设置数据集的根目录和标签目录等参数,getitem方法用来获取单个样本的图像标签。 以下是一个完整的示例代码,展示了如何使用Dataset类和自定义数据集类来读取图片数据集,并返回图像标签。其中MyData类是自定义的数据集类,重写了初始化方法和getitem方法。root_dir是数据集的根目录,ants_label_dir和bees_label_dir是标签目录。通过实例化MyData类,可以创建ants_datasets和bees_datasets两个数据集对象,然后将它们相加得到train_datasets。 ```python from torch.utils.data import Dataset from PIL import Image import os class MyData(Dataset): def __init__(self, root_dir, label_dir): self.root_dir = root_dir self.label_dir = label_dir self.path = os.path.join(self.root_dir, self.label_dir) self.img_list = os.listdir(self.path) def __getitem__(self, idx): img_name = self.img_list[idx] img_item_path = os.path.join(self.root_dir, self.label_dir, img_name) img = Image.open(img_item_path) label = self.label_dir return img, label def __len__(self): return len(self.img_list) root_dir = "dataset/train" ants_label_dir = "ants" bees_label_dir = "bees" ants_datasets = MyData(root_dir, ants_label_dir) bees_datasets = MyData(root_dir, bees_label_dir) train_datasets = ants_datasets + bees_datasets ``` 综上所述,datasets模块是用来读取数据集的,可以通过自定义数据集类继承Dataset类来实现。通过这个模块可以方便地处理图像数据集。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [利用ResNet34实现猫狗分类(包括数据集和代码)](https://download.csdn.net/download/mengxinmengxin12/88251300)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [PyTorch基础之数据模块Dataset、DataLoader用法详解(附源码)](https://blog.csdn.net/jiebaoshayebuhui/article/details/130439027)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [pytorch初学笔记(一):如何加载数据和Dataset实战](https://blog.csdn.net/weixin_45662399/article/details/127386185)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值