使用 Meilisearch 和 LangChain 实现向量化搜索的完整指南

", results[0].page_content)


#### 获取搜索结果及其分数

```python
# 返回文档及相似度分数
results_with_scores = vector_store.similarity_search_with_score(query, embedder_name=embedder_name)
print("文档内容:", results_with_scores[0][0].page_content)
print("相似度分数:", results_with_scores[0][1])

4. 使用预生成嵌入搜索

如果已经生成了查询的嵌入向量,可以直接通过向量进行检索:

# 通过嵌入向量查询
query_vector = embeddings.embed_query(query)
results = vector_store.similarity_search_by_vector(query_vector, embedder_name=embedder_name)
print("通过向量搜索的结果:", results[0].page_content)

应用场景分析

常见使用场景

  1. 智能问答系统:结合语义搜索,为用户提供精准的答案。
  2. 知识库管理:对海量文档进行向量化索引,提升检索效率。
  3. 电商商品搜索:基于用户输入,实现更智能、高相关度的商品推荐。

对比传统搜索

功能传统关键词搜索向量搜索
匹配方式关键词匹配嵌入匹配(语义相关性)
对同义词的支持
对拼写错误的容错能力
开发复杂度较高

实践建议

  1. 选择合适的嵌入模型:针对不同场景(如长文档、代码、图像),选择适配的嵌入生成工具。
  2. 分片策略:根据具体数据,调整 chunk_sizechunk_overlap 参数,平衡嵌入精度与性能。
  3. API 密钥管理:区分开发环境和生产环境,严格控制 MASTER_KEY 的使用范围。
  4. 监控性能:定期检查索引的查询效率,避免嵌入维度过大导致的性能瓶颈。

如果在使用过程中有任何问题,欢迎在评论区交流!

### 使用LangChain实现Milvus向量化的教程 #### 准备工作 为了使用 LangChain 实现 Milvus 的向量化操作,需先安装必要的 Python 库。这通常包括 `langchain` `pymilvus`。 ```bash pip install langchain pymilvus ``` #### 创建连接并初始化集合 建立到 Milvus 数据库的连接,并定义用于存储嵌入向量的数据集结构[^2]: ```python from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection connections.connect() fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True), FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=768) ] schema = CollectionSchema(fields) collection_name = "my_collection" milvus_collection = Collection(name=collection_name, schema=schema) ``` #### 加载文档与生成嵌入 利用 LangChain 提供的功能加载目标文件,并通过预训练的语言模型将其转换成数值形式表示——即所谓的“嵌入”。这里假设已经选择了合适的 embedding model 来处理输入文本[^1]。 ```python from langchain.document_loaders import TextLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings loader = TextLoader('path/to/your/document.txt') documents = loader.load() embedder = HuggingFaceEmbeddings() vectorized_docs = embedder.encode([doc.page_content for doc in documents]) ``` #### 插入数据至Milvus 最后一步就是把上述获得的向量连同对应的 ID 一起存入之前创建好的 Milvus 集合中去完成整个过程[^3]。 ```python data_to_insert = [[i], vector.tolist()] for i, vector in enumerate(vectorized_docs)] milvus_collection.insert(data_to_insert) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值