Description
A line on the plane is described by an equation Ax + By + C = 0. You are to find any point on this line, whose coordinates are integer numbers from - 5· 1018 to 5· 1018 inclusive, or to find out that such points do not exist.
Input
The first line contains three integers A, B and C ( - 2· 109 ≤ A, B, C ≤ 2· 109) — corresponding coefficients of the line equation. It is guaranteed that A2 + B2 > 0.
Output
If the required point exists, output its coordinates, otherwise output -1.
Sample Input
Input
2 5 3
Output
6 -3
#include<stdio.h> #include<math.h> __int64 gcd(__int64 a,__int64 b) { return b?gcd(b,a%b):a; } void ext_Euclid(__int64 a,__int64 b,__int64 &x,__int64 &y) { if(b==0) { x=1; y=0; return ; } ext_Euclid(b,a%b,x,y); __int64 tem=x; x=y; y=tem-a/b*y; } int main() { __int64 a,b,c,t; while(scanf("%I64d%I64d%I64d",&a,&b,&c)!=EOF) { if(a==0&&b==0) { printf("-1\n"); continue; } if(b==0) { if(c%a==0) printf("%I64d 0\n",-c/a); else printf("-1\n"); continue; } __int64 x,y; __int64 Y=gcd(a,b); c=-c; if(c%Y) { printf("-1\n"); continue; } a/=Y; b/=Y; c/=Y; ext_Euclid(a,b,x,y); t=c*x/b; x=c*x-b*t; printf("%I64d %I64d\n",x,(c-a*x)/b); } return 0; }