损失函数
开始的时候的,我觉得梯度最重要,但是都在强调损失函数。
- 损失意估量预测与真实之间的差距
- 梯度是缩小预测与真实之间的方向
刚开始学习,损失函数的确比较死板,反倒是梯度给予我们更大的进步的感觉,因为计算是沿着梯度的进行的。
不过,为什么损失函数会比梯度更受追捧呢?
因为损失是灵活的,真正死板的,反而是梯度。
梯度下降
对于函数: G ( H ( F ( x ) ) ) G(H(F(x))) G(H(F(x)))
{ ∂ G ∂ H = g ( x ) ∂ H ∂ F = h ( x ) ∂ F ∂ x = f ( x ) ⇒ ∂ G ∂ x = ∂ G ∂ H ⋅ ∂ H ∂ F ⋅ ∂ F ∂ x = g ( x ) ⋅ h ( x ) ⋅ f ( x ) \left\{ \begin{aligned} \frac{\partial G}{\partial H} =& g(x) \\ \frac{\partial H}{\partial F} =& h(x) \\ \frac{\partial F}{\partial x} =& f(x) \end{aligned} \right. \Rightarrow \frac{\partial G}{\partial x} = \frac{\partial G}{\partial H} \cdot \frac{\partial H}{\partial F} \cdot \frac{\partial F}{\partial x} = g(x)\cdot h(x) \cdot f(x) ⎩⎪⎪⎪⎪⎪⎨⎪