Pytorch中的梯度回传与梯度清零

首先要明确在Pytorch当中,计算得到的梯度是默认累加的,而不是下次计算梯度就自动清零上一次的梯度值。
这样做的好处有以下几点:
1、减小multitask的内存消耗

​ 在PyTorch中,multi-task任务一个标准的train from scratch流程为:

for idx, data in enumerate(train_loader):
    xs, ys = data
    pred1 = model1(xs)
    pred2 = model2(xs)
    

    loss1 = loss_fn1(pred1, ys)
    loss2 = loss_fn2(pred2, ys)
    
    ******
    loss = loss1 + loss2
    optmizer.zero_grad()
    loss.backward()
    ++++++
    optmizer.step()

​ 从PyTorch的设计原理上来说,在每次进行前向计算得到pred时,会产生一个用于梯度回传的计算图这张图储存了进行back propagation需要的中间结果(中间结果即每个需要更新变量的输出对本变量的局部梯度,用于根据链式法则进行梯度回传)。当调用了.backward()后,会从内存中将这张图进行释放。上述代码执行到************************时,内存中是包含了两张计算图的。执行到++++++时,得到对应的grad值并且释放内存。这样,训练时必须存储两张计算图,而如果loss的来源组成更加复杂,内存消耗会更大。

​ 为了减小每次的内存消耗,借助梯度累加,有:


因此有如下变种

for idx, data in enumerate(train_loader):
    xs, ys = data
    
    optmizer.zero_grad()
    # 计算d(l1)/d(x)
    pred1 = model1(xs) #生成graph1
    loss1 = loss_fn1(pred1, ys)
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值