首先要明确在Pytorch当中,计算得到的梯度是默认累加的,而不是下次计算梯度就自动清零上一次的梯度值。
这样做的好处有以下几点:
1、减小multitask的内存消耗
在PyTorch中,multi-task任务一个标准的train from scratch流程为:
for idx, data in enumerate(train_loader):
xs, ys = data
pred1 = model1(xs)
pred2 = model2(xs)
loss1 = loss_fn1(pred1, ys)
loss2 = loss_fn2(pred2, ys)
******
loss = loss1 + loss2
optmizer.zero_grad()
loss.backward()
++++++
optmizer.step()
从PyTorch的设计原理上来说,在每次进行前向计算得到pred时,会产生一个用于梯度回传的计算图,这张图储存了进行back propagation需要的中间结果(中间结果即每个需要更新变量的输出对本变量的局部梯度,用于根据链式法则进行梯度回传)。当调用了.backward()后,会从内存中将这张图进行释放。上述代码执行到************************时,内存中是包含了两张计算图的。执行到++++++时,得到对应的grad值并且释放内存。这样,训练时必须存储两张计算图,而如果loss的来源组成更加复杂,内存消耗会更大。
为了减小每次的内存消耗,借助梯度累加,有:

因此有如下变种
for idx, data in enumerate(train_loader):
xs, ys = data
optmizer.zero_grad()
# 计算d(l1)/d(x)
pred1 = model1(xs) #生成graph1
loss1 = loss_fn1(pred1, ys)

最低0.47元/天 解锁文章
2106





