RKHS:再生希尔伯特空间简介

本文深入探讨了Reproducing Kernel Hilbert Space (RKHS)的概念,包括其定义、性质及与Kernel的关系。详细解析了RKHS的构造方法,Kernel的唯一性和存在性,以及RKHS与L2空间的关系。此外,还介绍了RKHS在数学分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RKHS的定义

Def1(Evaluation function) H \mathcal{H} H 是一个 Hilbert 空间, X \mathcal{X} X 是一个非空集合, f : X → R f:\mathcal{X}\to \mathbb{R} f:XR 是定义在 H \mathcal{H} H 上的线性泛函。 对于任意的 x ∈ X , x\in \mathcal{X}, xX, 定义映射 δ x : H → R , \delta_x: \mathcal{H}\to\mathbb{R}, δx:HR, δ x : f ↦ f ( x ) \delta_x:f \mapsto f(x) δx:ff(x) 为在 x x x 点的 Evaluation function
显然, δ x \delta_x δx 是线性的。 那么 δ x \delta_x δx 是否是有界(连续)的呢? 事实上, δ x \delta_x δx 的有界性关乎 RKHS 的定义。
Def2(Reproducing Kernel Hilbert Space) H \mathcal{H} H 是一个 Hilbert 空间, 其元素为 f : X → R f:\mathcal{X}\to \mathbb{R} f:XR 。 若 δ x \delta_x δx 是连续的, 我们称 H \mathcal{H} H 是一个 RKHS。
上述定义并没有将 RKHS 与 Kernel 联系起来, 接下来, 我们将利用 kernel 来定义 RKHS。
Def3(Reproducing Kernel) H \mathcal{H} H 是一个 Hilbert 空间, 其元素为 f : X → R f:\mathcal{X}\to \mathbb{R} f:XR 。函数 k : X × X → R k:\mathcal{X}\times \mathcal{X}\to \mathbb{R} k:X×XR 被称作 H \mathcal{H} H 的 kernel 如果下式成立:

  • ∀ x ∈ X , k ( ⋅ , x ) ∈ H ; \forall x\in \mathcal{X}, k(\cdot, x)\in\mathcal{H}; xX,k(,x)H;
  • ∀ x ∈ X , ∀ f ∈ H , ⟨ f , k ( ⋅ , x ) ⟩ H = f ( x ) , \forall x \in \mathcal{X}, \forall f\in \mathcal{H}, \langle f, k(\cdot, x)\rangle_{\mathcal{H}}=f(x), xX,fH,f,k(,x)H=f(x), (the reproducing property).

有上述定义我们立得, ∀ x , y ∈ X , k ( x , y ) = ⟨ k ( ⋅ , x ) , k ( ⋅ , y ) ⟩ H \forall x,y\in\mathcal{X}, k(x,y)=\langle k(\cdot,x),k(\cdot, y)\rangle_{\mathcal{H}} x,yX,k(x,y)=k(,x),k(,y)H。 上述定义产生了一系列的问题,比如这样的Kernel是否存在唯一?如果存在唯一,那么它有什么性质呢?上述两种定义方式是否等价? 接下来我们便回答这一系列的问题。

RKHS的性质

首先,如果 Kernel 存在, 那么它一定是唯一的。 事实上, 若 H \mathcal{H} H 有两个 Kernels, 那么有 ⟨ f , k 1 ( ⋅ , x ) − k 2 ( ⋅ , x ) ⟩ H = f ( x ) − f ( x ) = 0 , ∀ f ∈ H , ∀ x ∈ X . \langle f, k_1(\cdot, x)-k_2(\cdot, x)\rangle_{\mathcal{H}}=f(x)-f(x)=0,\quad \forall f\in\mathcal{H},\forall x\in\mathcal{X}. f,k1(,x)k2(,x)H=f(x)f(x)=0,fH,xX.特别地, 我们取 f = k 1 ( ⋅ , x ) − k 2 ( ⋅ , x ) f=k_1(\cdot,x)-k_2(\cdot,x) f=k1(,x)k2(,x), 便可得其唯一性。 而存在性我们可以利用 Riesz 表示定理得到。
Th(Existence of the reproducing kernel) H \mathcal{H} H 是一个 RKHS 当且仅当 H H H 有一个再生核(Reproducing Kernel)。
Proof: H \mathcal{H} H 有一个再生核 k k k, 则 ⟨ f , k ( ⋅ , x ) ⟩ H = f ( x ) \langle f, k(\cdot, x)\rangle_{\mathcal{H}}=f(x) f,k(,x)H=f(x)。 由此可得,
∣ δ x f ∣ = ∣ f ( x ) ∣ = ∣ ⟨ f , k ( ⋅ , x ) ⟩ H ∣ ≤ ∥ f ∥ H ⋅ ∥ k ( ⋅ , x ) ∥ H = k ( x , x ) 1 2 ∥ f ∥ H \begin{aligned} |\delta_xf|&=|f(x)|\\ &=|\langle f, k(\cdot, x)\rangle_{\mathcal{H}}|\\ &\leq \Vert f\Vert_{\mathcal{H}} \cdot \Vert k(\cdot,x)\Vert _{\mathcal{H}}\\ &=k(x,x)^{\frac{1}{2}}\Vert f\Vert _{\mathcal{H}} \end{aligned} δxf=f(x)=f,k(,x)HfHk(,x)H=k(x,x)21fH δ x \delta_x δx 是有界的, H \mathcal{H} H 是一个 RKHS.
反过来, 若 H \mathcal{H} H 是一个 RKHS, 则 δ x ∈ H ′ \delta_x\in \mathcal{H}' δxH 是有界的。 由 Riesz 表示定理有存在一个元素 f δ x ∈ H f_{\delta_x} \in \mathcal{H} fδxH 使得
δ x f = ⟨ f , f δ x ⟩ H , ∀ f ∈ H . \delta_xf=\langle f,f_{\delta_x}\rangle_{\mathcal{H}}, \quad \forall f\in\mathcal{H}. δxf=f,fδxH,fH.定义 k ( x ′ , x ) = f δ x ( x ′ ) , k(x',x)= f_{\delta_{x}}(x'), k(x,x)=fδx(x), 验证两条性质即可。
那么,所谓的 Kernel 到底有什么形式呢? 给定一个 Kernel, 其对应的 RKHS 具体有什么形式呢? 首先我们给出一个引理:
Lemma: 再生核都是对称正定的。
Proof: k ( x , y ) = ⟨ k ( ⋅ , x ) , k ( ⋅ , y ) ⟩ , k(x,y)=\langle k(\cdot, x),k(\cdot,y)\rangle, k(x,y)=k(,x),k(,y), ϕ : x ↦ k ( ⋅ , x ) \phi: x\mapsto k(\cdot,x) ϕ:xk(,x), 则有 ∑ i = 1 n ∑ j = 1 n a i a j k ( x i , x j ) = ⟨ ∑ i = 1 n a i ϕ ( x i ) , ∑ j = 1 n a j ϕ ( x j ) ⟩ ≥ 0. \sum_{i=1}^n\sum_{j=1}^na_ia_jk(x_i,x_j)=\langle \sum_{i=1}^na_i\phi(x_i), \sum_{j=1}^na_j\phi(x_j)\rangle\geq 0. i=1nj=1naiajk(xi,xj)=i=1naiϕ(xi),j=1najϕ(xj)0.我们给出对于任意一个正定核对应的RKHS的具体形式:

  • k : X × X → R k:\mathcal{X}\times \mathcal{X}\to \mathbb{R} k:X×XR 是一个正定核, 定义 H 0 = [ { k ( ⋅ , x ) } x ∈ X ] \mathcal{H}_0=[\{k(\cdot,x)\}_{x\in\mathcal{X}}] H0=[{k(,x)}xX] 其装备范数 ⟨ f , g ⟩ H 0 = ∑ i = 1 n ∑ j = 1 m α i β j k ( y j , x i ) , \langle f,g\rangle_{\mathcal{H}_0}=\sum_{i=1} ^n \sum_{j=1}^m\alpha_i\beta_jk(y_j,x_i), f,gH0=i=1nj=1mαiβjk(yj,xi), 其中 f = ∑ i = 1 n α i k ( ⋅ , x i ) , g = ∑ j = 1 m β j k ( ⋅ , y j ) . f=\sum_{i=1}^n\alpha_ik(\cdot, x_i),g=\sum_{j=1}^m\beta_jk(\cdot,y_j). f=i=1nαik(,xi),g=j=1mβjk(,yj).
  • H 0 \mathcal{H}_0 H0 上的Evaluation function 是连续的,并且 H 0 \mathcal{H}_0 H0 中任意收敛到0的Cauchy列依范数收敛,i.e., f n ∈ H 0 , f n → 0 ( p o i n t w i s e ) ⇒ ∥ f n ∥ H 0 → 0. f_n\in\mathcal{H}_0,f_n\to 0(pointwise)\Rightarrow \Vert f_n\Vert_{\mathcal{H}_0}\to 0. fnH0,fn0(pointwise)fnH00.
  • 定义 H = { f : ∃ f n ∈ H 0 , s . t . f n → f ( p o i n t w i s e , H 0 ) } . \mathcal{H}=\{f:\exists f_n\in\mathcal{H}_0,s.t. f_n\to f(pointwise, \mathcal{H}_0)\}. H={f:fnH0,s.t.fnf(pointwise,H0)}.
  • 定义内积 ⟨ f , g ⟩ H = lim ⁡ n → ∞ ⟨ f n , g n ⟩ H 0 , \langle f,g\rangle_{\mathcal{H}}=\lim\limits_{n\to\infty}\langle f_n,g_n\rangle_{\mathcal{H}_0}, f,gH=nlimfn,gnH0, ⟨ ⋅ , ⋅ ⟩ H \langle\cdot,\cdot\rangle_{\mathcal{H}} ,H 是 well-defined 和内积。
  • H 0 \mathcal{H}_0 H0 H \mathcal{H} H 中稠密且 H \mathcal{H} H 上的 Evaluation function 是连续的;另外有 H \mathcal{H} H 是完备的。

至此,我们便得到 k ( ⋅ , x ) k(\cdot, x) k(,x) 对应的 RKHS ---- H \mathcal{H} H。 上述定理也被称作 Moore-Aronszajn Theorem

Th(Sum of RKHSs) k 1 , k 2 ∈ R + X × X k_1,k_2\in\mathbb{R}_+^{\mathcal{X} \times \mathcal{X}} k1,k2R+X×X (再生核), 令 k = k 1 + k 2 k=k_1+k_2 k=k1+k2, 则 H k = H k 1 + H k 2 = { f 1 + f 2 : f 1 ∈ H k 1 , f 2 ∈ H k 2 } , \mathcal{H}_k=\mathcal{H}_{k_1}+\mathcal{H}_{k_2}=\{f_1+f_2:f_1\in\mathcal{H}_{k_1},f_2\in\mathcal{H}_{k_2}\}, Hk=Hk1+Hk2={f1+f2:f1Hk1,f2Hk2}, ∥ f ∥ H k 2 = min ⁡ f 1 + f 2 = f { ∥ f 1 ∥ H k 1 2 + ∥ f 2 ∥ H k 2 2 } . \Vert f\Vert ^2_{\mathcal{H}_k}=\min\limits_{f_1+f_2=f}\{\Vert f_1\Vert^2_{\mathcal{H}_{k_1}}+\Vert f_2\Vert^2_{\mathcal{H}_{k_2}}\}. fHk2=f1+f2=fmin{f1Hk12+f2Hk22}.
Th(Product of kernels) k 1 , k 2 k_1,k_2 k1,k2 分别是 X , Y \mathcal{X},\mathcal{Y} X,Y 上的 kernel, 则 k ( ( x , y ) , ( x ′ , y ′ ) ) ≔ k 1 ( x , x ′ ) k 2 ( y , y ′ ) k((x,y),(x',y'))\coloneqq k_1(x,x')k_2(y,y') k((x,y),(x,y)):=k1(x,x)k2(y,y) X × Y \mathcal{X}\times \mathcal{Y} X×Y上的 kernel 。

RKHS与 L 2 L^2 L2 的关系

我们先给出泛函中紧算子的谱分解定理:
Th(Spectral theorem) F \mathcal{F} F 是一个 Hilbert 空间, T : F → F T:\mathcal{F}\to \mathcal{F} T:FF 是一个紧算子,那么存在至多可数个正交基 { e j } j ∈ J ∈ F \{e_j\}_{j\in J}\in \mathcal{F} {ej}jJF { λ j } j ∈ J \{\lambda_j\}_{j\in J} {λj}jJ 满足 ∣ λ 1 ∣ ≥ ∣ λ 2 ∣ ≥ ⋯ ≥ 0 |\lambda_1|\geq |\lambda_2|\geq \cdots\geq0 λ1λ20 使得 T f = ∑ j ∈ J λ j ⟨ f , e j ⟩ F , ∀ f ∈ F . Tf=\sum_{j\in J}\lambda_j\langle f,e_j\rangle_{\mathcal{F}},\quad\forall f\in\mathcal{F}. Tf=jJλjf,ejF,fF.
Def(Intergral Operator) k k k 是一个定义在紧度量空间 X \mathcal{X} X 上的连续核, ν \nu ν X \mathcal{X} X 上的有限 Borel 测度, S k : L 2 ( X , μ ) → C ( X ) , S_k:L^2(\mathcal{X},\mu)\to C(\mathcal{X}), Sk:L2(X,μ)C(X),
( S k f ) ( x ) = ∫ k ( x , y ) f ( y ) ν ( d y ) , f ∈ L 2 ( X ; ν ) . (S_kf)(x)=\int k(x,y)f(y)\nu(dy),\quad f\in L^2(\mathcal{X};\nu). (Skf)(x)=k(x,y)f(y)ν(dy),fL2(X;ν). T k = I k ∘ S k T_k=I_k\circ S_k Tk=IkSk, 其中 I k : C ( X ) → L 2 ( X ; ν ) I_k:C(\mathcal{X})\to L^2(\mathcal{X};\nu) Ik:C(X)L2(X;ν)。 容易证明 S k f S_kf Skf 是一个连续函数并且 T k T_k Tk 是一个紧自伴算子。值得注意的是 T k f T_kf Tkf 是一个等价类( C ( X → L 2 ( X ; ν ) C(\mathcal{X}\to L^2(\mathcal{X};\nu) C(XL2(X;ν)决定了 ν − 0 \nu-0 ν0 可变。)
TH(Mercer’s Theorem) k k k 是紧度量空间 X \mathcal{X} X 上的连续核, ν \nu ν X \mathcal{X} X 上的有限 Borel 测度, s u p p    ν = X supp \;\nu=\mathcal{X} suppν=X。 则对任意的 x , y ∈ X x,y\in \mathcal{X} x,yX k ( x , y ) = ∑ j ∈ J λ j e j ( x ) e j ( y ) . k(x,y)=\sum_{j\in J}\lambda_je_j(x)e_j(y). k(x,y)=jJλjej(x)ej(y).
Mercer 定理我们可以给出 RKHS 的另一种形式:
TH: k k k 是紧度量空间 X \mathcal{X} X 上的连续核, 定义 H = { f = ∑ j ∈ J a j e j : { a j λ j } ∈ ℓ 2 ( J ) } \mathcal{H}=\{f=\sum_{j\in J}a_je_j:\{\frac{a_j}{\sqrt{\lambda_j}}\}\in\ell^2(J)\} H={f=jJajej:{λj aj}2(J)}其内积为 ⟨ ∑ j ∈ J a j e j , ∑ j ∈ J b j e j ⟩ H = ∑ j ∈ J a j b j λ j . \langle \sum_{j\in J}a_je_j, \sum_{j\in J}b_je_j\rangle_{\mathcal{H}}=\sum_{j\in J}\frac{a_jb_j}{\lambda_j}. jJajej,jJbjejH=jJλjajbj. H = H k \mathcal{H}=\mathcal{H}_k H=Hk
最后我们将探讨 H k \mathcal{H}_k Hk L 2 ( X ; ν ) L^2(\mathcal{X};\nu) L2(X;ν) 之间的关系。 假定 { e ~ j } j ∈ J \{\tilde{e}_j\}_{j\in J} {e~j}jJ L 2 ( X ; ν ) L^2(\mathcal{X};\nu) L2(X;ν) 的一组正交基, i.e. T k T_k Tk 的特征值是严格正的。 记 f ^ ( j ) = ⟨ f , e ~ j ⟩ L 2 \hat{f}(j)=\langle f,\tilde{e}_j\rangle_{L^2} f^(j)=f,e~jL2 f f f 的 Fourier 系数, 则有之前讨论有 T k f = ∑ j ∈ J λ j f ^ ( j ) e ~ j , f ∈ L 2 ( X ; ν ) , T_kf=\sum_{j\in J}\lambda_j \hat{f}(j)\tilde{e}_j,\quad f\in L^2(\mathcal{X};\nu), Tkf=jJλjf^(j)e~j,fL2(X;ν),
若果 T k = T k 1 2 ∘ T k 1 2 , T_k=T_k^{\frac{1}{2}} \circ T_k^{\frac{1}{2}}, Tk=Tk21Tk21, T k 1 / 2 = ∑ j ∈ J λ j f ^ ( j ) e ~ j T_k^{1/2}=\sum_{j\in J}\sqrt{\lambda_j} \hat{f}(j)\tilde{e}_j Tk1/2=jJλj f^(j)e~j e j = λ j − 1 S k e ~ j e_j=\lambda_j^{-1}S_k\tilde{e}_j ej=λj1Ske~j代入有 ∑ j ∈ J ∣ f ^ ( j ) ∣ 2 = ∥ f ∥ L 2 < ∞ ⇒ { f ^ ( j ) } ∈ ℓ 2 ( J ) ⇒ ∑ j ∈ J λ j f ^ ( j ) e j ∈ H k \sum_{j\in J}|\hat{f}(j)|^2=\Vert f\Vert _{L^2}<\infty \Rightarrow \{\hat{f}(j)\}\in \ell^2(J)\Rightarrow \sum_{j\in J}\sqrt{\lambda_j}\hat{f}(j)e_j \in \mathcal{H}_k jJf^(j)2=fL2<{f^(j)}2(J)jJλj f^(j)ejHk
这说明 T k 1 / 2 T_k^{1/2} Tk1/2 L 2 ( X ; ν ) L^2(\mathcal{X};\nu) L2(X;ν) H k \mathcal{H}_k Hk 的同构映射。另外我们知道 λ j → 0    a s    j → ∞ \lambda_j\to 0 \;as \;j\to\infty λj0asj, 结合 H k = ∑ j ∈ J a j e j , a j / λ j ∈ ℓ 2 ( J ) \mathcal{H}_k=\sum_{j\in J}a_je_j,a_j/\sqrt{\lambda_j}\in\ell^2(J) Hk=jJajej,aj/λj 2(J) H k \mathcal{H}_k Hk L 2 ( X , μ ) L^2(\mathcal{X},\mu) L2(X,μ)小得多”。

另外, RKHS 还有很多好的性质, 比如可分性、Gaussian RKHS 等, 可查找相关论文进一步了解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值