结合KSVM理解再生核希尔伯特空间(RKHS)中的表示定理(Representer Theorem)

本文详细解释了线性模型与非线性模型的区别,重点介绍了表示定理,特别是如何结合支持向量机(SVM)和核支持向量机(KSVM)理解表示定理。通过引入核技巧,任何采用L2正则化的线性模型都可以使用核函数。最后,阐述了在再生核希尔伯特空间(RKHS)中的表示定理,说明了RKHS如何将函数等价于无穷维向量,并解释了RKHS中的最优解条件。
摘要由CSDN通过智能技术生成

1 线性模型与非线性模型

在学习表示定理之前我们要先理解什么是线性模型,这个概念听过很多次,但真正追究起来并不是很清楚,在下面参考的第一二篇文章中对广义线性模型进行了讲解,在此我也不做总结,一是能力有限怕带跑偏了,二是本篇内容的重点不在此。其中比较明确的一点就是线性模型始终试图找到一个超平面对数据进行划分,例如逻辑回归,它是用超平面 w T x + b w^{T}x+b wTx+b对数据进行划分,只不过对超平面的划分结果进行了非线性处理;引入核技巧的SVM则是先对数据进行了非线性映射,然后对映射后的特征空间用 w T x + b w^{T}x+b wTx+b进行划分;所以这两者都属于线性模型。

2 表示定理

表示定理的内容如下:
对于任何采用L2正则化的线性模型,其目标函数形式为:
m i n w ∑ i = 1 n e r r ( y i , w T x i ) + λ w T w min_{w}\sum_{i=1}^{n}err(y_{i},w^{T}x_{i})+\lambda w^{T}w minwi=1nerr(yi,wTxi)+λwTw,那么其最优解可以表示为: w ∗ = ∑ i = 1 n α i x i w^{*}=\sum_{i=1}^{n}\alpha _{i}x_{i} w=i=1nαixi。证明如下:
我们可以假设最优解 w ∗ = w ∥ ∗ + w ⊥ ∗ w^{*}=w_{\parallel}^{*}+w_{\perp}^{*} w=w+w,其中:
w ∥ ∗ w_{\parallel}^{*} w属于由向量组{ x 1 , x 2 , . . . , x n x_{1},x_{2},...,x_{n} x1,x2,...,xn}生成的子空间 s p a n ( x i ) span(x_{i}) span(xi)
w ⊥ ∗ w_{\perp}^{*} w属于 s p a n ( x i ) span(x_{i}) span(xi)的正交补空间;
那么对于任意训练样本 x i x_{i} xi
w ∗ T x i = ( w ∥ ∗ + w ⊥ ∗ ) T x i = w ∥ ∗ T x i w^{*T}x_{i}=(w_{\parallel}^{*}+w_{\perp}^{*})^{T}x_{i}=w_{\parallel}^{*T}x_{i} wTxi=(w+w)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值