AlexNet

AlexNet 网络

AlexNet 网络是在 LeNet5 网络之后第一个引起大家注意的网络,因其在 ImageNet 大赛上的出色发挥而受到关注;AlexNet 在结构上类似于 LeNet5,但在细节上有很大的不同,AlexNet 的网络更为复杂。
在这里插入图片描述
AlexNet 首先将网络分为两部分,分别对应两个 GPU,直到特定的网络层后两个部分才会发生交互,这样设置提高了运算的效率。
两部分网络在结构上没有太大的差异,以下是 AlexNet 网络结构的详细示意图:
在这里插入图片描述

AlexNet 的特点

1. 使用 Relu 作为激活函数

R e l u 函 数 : f ( x ) = m a x ( 0 , x ) Relu 函数:f(x) = max(0, x) Reluf(x)=max(0,x)
使用 Relu 激活函数比使用 tanh 和 sigmoid 激活函数的网络训练快数倍

2. 局部响应归一化 (LRN)

由于 tanh 和 Sigmoid 函数的值域都是有范围的,但 Relu 函数的值域没有固定范围,因此要对 Relu 激活后的结果进行归一化。LRN 的方法如下面的公式:
b ( x , y ) i = a ( x , y ) i ( k + α ∑ j = m a x ( 0 , i − n / 2 m i n ( N − 1 , i + n / 2 ) ( a ( x , y ) j ) 2 ) β b^i_{(x,y)}=\frac{a^i_{(x,y)}}{(k+\alpha\sum^{min(N-1,i+n/2)}_{j=max(0,i-n/2}(a^j_{(x,y)})^2)^{\beta}} b(x,y)i=(k+αj=max(0,in/2min(N1,i+n/2)(a(x,y)j)2)βa(x,y)i
上面式子中, a ( x , y ) i a^i_{(x,y)} a(x,y)i 代表 Relu 在第 i 个通道中位置为 (x,y) 的输出, n n n 表示 a ( x , y ) i a^i_{(x,y)} a(x,y)i 的邻值个数, N N N 表示通道个数, b ( x , y ) i b^i_{(x,y)} b(x,y)i 表示 LRN 的结果。
LRN 做的是 Relu 输出值在沿通道方向上的归一化,如下图所示
在这里插入图片描述
另外还有超参数 α , β , k , n \alpha, \beta, k,n α,β,k,n,论文中最终确定的结果是 α = 1 0 − 4 , β = 0.75 , k = 2 , n = 5 \alpha=10^{-4}, \beta=0.75, k=2, n=5 α=104,β=0.75,k=2,n=5

但在提出 VGGNet 的论文中认为 LRN 这个技术并不能提升效果,反而会浪费计算资源
3. 使用 dropout

使用 dropout 能够有效地防止神经网络过拟合,dropout 主要用于网络的全连接层(不包括输出层),它会遍历每一层全连接层,并设置结点被消除的概率,然后删除从该结点进出的连线,得到一个结点更少,规模更小的网络;每一次迭代都会重新随机消除结点,直到训练过程结束
dropout

AlexNet 的 Tensorflow 实现

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("./tmp/data", one_hot=True)

# 定义超参数
learning_rate = 0.001
training_iters = 200000
batch_size = 64
display_step = 20

# 定义网络参数
n_input = 784  # 输入的维度
n_classes = 10  # 标签的维度
dropout = 0.8  # Dropout 的概率

# 占位符输入
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32)

# 卷积操作


def conv2d(name, l_input, w, b):
    return tf.nn.relu(
        tf.nn.bias_add(
            tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'), b),
        name=name)


# 最大下采样操作
def max_pool(name, l_input, k):
    return tf.nn.max_pool(
        l_input,
        ksize=[1, k, k, 1],
        strides=[1, k, k, 1],
        padding='SAME',
        name=name)


# 归一化操作
def norm(name, l_input, lsize=4):
    return tf.nn.lrn(
        l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)


# 定义整个网络
def alex_net(_X, _weights, _biases, _dropout):
    # 向量转为矩阵
    _X = tf.reshape(_X, shape=[-1, 28, 28, 1])

    # 卷积层
    conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
    # 下采样层
    pool1 = max_pool('pool1', conv1, k=2)
    # 归一化层
    norm1 = norm('norm1', pool1, lsize=4)
    # Dropout
    norm1 = tf.nn.dropout(norm1, _dropout)

    # 卷积
    conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
    # 下采样
    pool2 = max_pool('pool2', conv2, k=2)
    # 归一化
    norm2 = norm('norm2', pool2, lsize=4)
    # Dropout
    norm2 = tf.nn.dropout(norm2, _dropout)

    # 卷积
    conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
    # 下采样
    pool3 = max_pool('pool3', conv3, k=2)
    # 归一化
    norm3 = norm('norm3', pool3, lsize=4)
    # Dropout
    norm3 = tf.nn.dropout(norm3, _dropout)

    # 全连接层,先把特征图转为向量
    dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]])
    dense1 = tf.nn.relu(
        tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')
    # 全连接层
    dense2 = tf.nn.relu(
        tf.matmul(dense1, _weights['wd2']) + _biases['bd2'],
        name='fc2')  # Relu activation

    # 网络输出层
    out = tf.matmul(dense2, _weights['out']) + _biases['out']
    return out


# 存储所有的网络参数
weights = {
    'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
    'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
    'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
    'wd1': tf.Variable(tf.random_normal([4 * 4 * 256, 1024])),
    'wd2': tf.Variable(tf.random_normal([1024, 1024])),
    'out': tf.Variable(tf.random_normal([1024, 10]))
}
biases = {
    'bc1': tf.Variable(tf.random_normal([64])),
    'bc2': tf.Variable(tf.random_normal([128])),
    'bc3': tf.Variable(tf.random_normal([256])),
    'bd1': tf.Variable(tf.random_normal([1024])),
    'bd2': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}

# 构建模型
pred = alex_net(x, weights, biases, keep_prob)

# 定义损失函数和学习步骤
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# 测试网络
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# 初始化所有的共享变量
init = tf.global_variables_initializer()

# 开启一个训练
with tf.Session() as sess:
    sess.run(init)
    step = 1
    # Keep training until reach max iterations
    while step * batch_size < training_iters:
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        # 获取批数据
        sess.run(optimizer, feed_dict={
            x: batch_xs,
            y: batch_ys,
            keep_prob: dropout
        })
        if step % display_step == 0:
            # 计算精度
            acc = sess.run(accuracy, feed_dict={
                x: batch_xs,
                y: batch_ys,
                keep_prob: 1.
            })
            # 计算损失值
            loss = sess.run(cost, feed_dict={
                x: batch_xs,
                y: batch_ys,
                keep_prob: 1.
            })
            print("Iter " + str(step * batch_size) + ", Minibatch Loss= " +
                  "{:.6f}".format(loss) + ", Training Accuracy= " +
                  "{:.5f}".format(acc))
        step += 1
    print("Optimization Finished!")
    # 计算测试精度
    print(
        "Testing Accuracy:",
        sess.run(accuracy, feed_dict={
            x: mnist.test.images[:256],
            y: mnist.test.labels[:256],
            keep_prob: 1.
        }))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值