AlexNet 网络
AlexNet 网络是在 LeNet5 网络之后第一个引起大家注意的网络,因其在 ImageNet 大赛上的出色发挥而受到关注;AlexNet 在结构上类似于 LeNet5,但在细节上有很大的不同,AlexNet 的网络更为复杂。
AlexNet 首先将网络分为两部分,分别对应两个 GPU,直到特定的网络层后两个部分才会发生交互,这样设置提高了运算的效率。
两部分网络在结构上没有太大的差异,以下是 AlexNet 网络结构的详细示意图:
AlexNet 的特点
1. 使用 Relu 作为激活函数
R
e
l
u
函
数
:
f
(
x
)
=
m
a
x
(
0
,
x
)
Relu 函数:f(x) = max(0, x)
Relu函数:f(x)=max(0,x)
使用 Relu 激活函数比使用 tanh 和 sigmoid 激活函数的网络训练快数倍
2. 局部响应归一化 (LRN)
由于 tanh 和 Sigmoid 函数的值域都是有范围的,但 Relu 函数的值域没有固定范围,因此要对 Relu 激活后的结果进行归一化。LRN 的方法如下面的公式:
b
(
x
,
y
)
i
=
a
(
x
,
y
)
i
(
k
+
α
∑
j
=
m
a
x
(
0
,
i
−
n
/
2
m
i
n
(
N
−
1
,
i
+
n
/
2
)
(
a
(
x
,
y
)
j
)
2
)
β
b^i_{(x,y)}=\frac{a^i_{(x,y)}}{(k+\alpha\sum^{min(N-1,i+n/2)}_{j=max(0,i-n/2}(a^j_{(x,y)})^2)^{\beta}}
b(x,y)i=(k+α∑j=max(0,i−n/2min(N−1,i+n/2)(a(x,y)j)2)βa(x,y)i
上面式子中,
a
(
x
,
y
)
i
a^i_{(x,y)}
a(x,y)i 代表 Relu 在第 i 个通道中位置为 (x,y) 的输出,
n
n
n 表示
a
(
x
,
y
)
i
a^i_{(x,y)}
a(x,y)i 的邻值个数,
N
N
N 表示通道个数,
b
(
x
,
y
)
i
b^i_{(x,y)}
b(x,y)i 表示 LRN 的结果。
LRN 做的是 Relu 输出值在沿通道方向上的归一化,如下图所示
另外还有超参数
α
,
β
,
k
,
n
\alpha, \beta, k,n
α,β,k,n,论文中最终确定的结果是
α
=
1
0
−
4
,
β
=
0.75
,
k
=
2
,
n
=
5
\alpha=10^{-4}, \beta=0.75, k=2, n=5
α=10−4,β=0.75,k=2,n=5
但在提出 VGGNet 的论文中认为 LRN 这个技术并不能提升效果,反而会浪费计算资源
3. 使用 dropout
使用 dropout 能够有效地防止神经网络过拟合,dropout 主要用于网络的全连接层(不包括输出层),它会遍历每一层全连接层,并设置结点被消除的概率,然后删除从该结点进出的连线,得到一个结点更少,规模更小的网络;每一次迭代都会重新随机消除结点,直到训练过程结束
AlexNet 的 Tensorflow 实现
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("./tmp/data", one_hot=True)
# 定义超参数
learning_rate = 0.001
training_iters = 200000
batch_size = 64
display_step = 20
# 定义网络参数
n_input = 784 # 输入的维度
n_classes = 10 # 标签的维度
dropout = 0.8 # Dropout 的概率
# 占位符输入
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32)
# 卷积操作
def conv2d(name, l_input, w, b):
return tf.nn.relu(
tf.nn.bias_add(
tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'), b),
name=name)
# 最大下采样操作
def max_pool(name, l_input, k):
return tf.nn.max_pool(
l_input,
ksize=[1, k, k, 1],
strides=[1, k, k, 1],
padding='SAME',
name=name)
# 归一化操作
def norm(name, l_input, lsize=4):
return tf.nn.lrn(
l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
# 定义整个网络
def alex_net(_X, _weights, _biases, _dropout):
# 向量转为矩阵
_X = tf.reshape(_X, shape=[-1, 28, 28, 1])
# 卷积层
conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
# 下采样层
pool1 = max_pool('pool1', conv1, k=2)
# 归一化层
norm1 = norm('norm1', pool1, lsize=4)
# Dropout
norm1 = tf.nn.dropout(norm1, _dropout)
# 卷积
conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
# 下采样
pool2 = max_pool('pool2', conv2, k=2)
# 归一化
norm2 = norm('norm2', pool2, lsize=4)
# Dropout
norm2 = tf.nn.dropout(norm2, _dropout)
# 卷积
conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
# 下采样
pool3 = max_pool('pool3', conv3, k=2)
# 归一化
norm3 = norm('norm3', pool3, lsize=4)
# Dropout
norm3 = tf.nn.dropout(norm3, _dropout)
# 全连接层,先把特征图转为向量
dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]])
dense1 = tf.nn.relu(
tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')
# 全连接层
dense2 = tf.nn.relu(
tf.matmul(dense1, _weights['wd2']) + _biases['bd2'],
name='fc2') # Relu activation
# 网络输出层
out = tf.matmul(dense2, _weights['out']) + _biases['out']
return out
# 存储所有的网络参数
weights = {
'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
'wd1': tf.Variable(tf.random_normal([4 * 4 * 256, 1024])),
'wd2': tf.Variable(tf.random_normal([1024, 1024])),
'out': tf.Variable(tf.random_normal([1024, 10]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([64])),
'bc2': tf.Variable(tf.random_normal([128])),
'bc3': tf.Variable(tf.random_normal([256])),
'bd1': tf.Variable(tf.random_normal([1024])),
'bd2': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# 构建模型
pred = alex_net(x, weights, biases, keep_prob)
# 定义损失函数和学习步骤
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# 测试网络
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 初始化所有的共享变量
init = tf.global_variables_initializer()
# 开启一个训练
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# 获取批数据
sess.run(optimizer, feed_dict={
x: batch_xs,
y: batch_ys,
keep_prob: dropout
})
if step % display_step == 0:
# 计算精度
acc = sess.run(accuracy, feed_dict={
x: batch_xs,
y: batch_ys,
keep_prob: 1.
})
# 计算损失值
loss = sess.run(cost, feed_dict={
x: batch_xs,
y: batch_ys,
keep_prob: 1.
})
print("Iter " + str(step * batch_size) + ", Minibatch Loss= " +
"{:.6f}".format(loss) + ", Training Accuracy= " +
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
# 计算测试精度
print(
"Testing Accuracy:",
sess.run(accuracy, feed_dict={
x: mnist.test.images[:256],
y: mnist.test.labels[:256],
keep_prob: 1.
}))