Machine Learning Python Code --- Gaussian Mixture Model

"""Gaussian Mixture Model."""


# Author: Wei Xue <xuewei4d@gmail.com>
# Modified by Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause


import numpy as np


from scipy import linalg


from .base import BaseMixture, _check_shape
from ..externals.six.moves import zip
from ..utils import check_array
from ..utils.validation import check_is_fitted
from ..utils.extmath import row_norms




###############################################################################
# Gaussian mixture shape checkers used by the GaussianMixture class


def _check_weights(weights, n_components):
    """Check the user provided 'weights'.


    Parameters
    ----------
    weights : array-like, shape (n_components,)
        The proportions of components of each mixture.


    n_components : int
        Number of components.


    Returns
    -------
    weights : array, shape (n_components,)
    """
    weights = check_array(weights, dtype=[np.float64, np.float32],
                          ensure_2d=False)
    _check_shape(weights, (n_components,), 'weights')


    # check range
    if (any(np.less(weights, 0.)) or
            any(np.greater(weights, 1.))):
        raise ValueError("The parameter 'weights' should be in the range "
                         "[0, 1], but got max value %.5f, min value %.5f"
                         % (np.min(weights), np.max(weights)))


    # check normalization
    if not np.allclose(np.abs(1. - np.sum(weights)), 0.):
        raise ValueError("The parameter 'weights' should be normalized, "
                         "but got sum(weights) = %.5f" % np.sum(weights))
    return weights




def _check_means(means, n_components, n_features):
    """Validate the provided 'means'.


    Parameters
    ----------
    means : array-like, shape (n_components, n_features)
        The centers of the current components.


    n_components : int
        Number of components.


    n_features : int
        Number of features.


    Returns
    -------
    means : array, (n_components, n_features)
    """
    means = check_array(means, dtype=[np.float64, np.float32], ensure_2d=False)
    _check_shape(means, (n_components, n_features), 'means')
    return means




def _check_precision_positivity(precision, covariance_type):
    """Check a precision vector is positive-definite."""
    if np.any(np.less_equal(precision, 0.0)):
        raise ValueError("'%s precision' should be "
                         "positive" % covariance_type)




def _check_precision_matrix(precision, covariance_type):
    """Check a precision matrix is symmetric and positive-definite."""
    if not (np.allclose(precision, precision.T) and
            np.all(linalg.eigvalsh(precision) > 0.)):
        raise ValueError("'%s precision' should be symmetric, "
                         "positive-definite" % covariance_type)




def _check_precisions_full(precisions, covariance_type):
    """Check the precision matrices are symmetric and positive-definite."""
    for k, prec in enumerate(precisions):
        prec = _check_precision_matrix(prec, covariance_type)




def _check_precisions(precisions, covariance_type, n_components, n_features):
    """Validate user provided precisions.


    Parameters
    ----------
    precisions : array-like,
        'full' : shape of (n_components, n_features, n_features)
        'tied' : shape of (n_features, n_features)
        'diag' : shape of (n_components, n_features)
        'spherical' : shape of (n_components,)


    covariance_type : string


    n_components : int
        Number of components.


    n_features : int
        Number of features.


    Returns
    -------
    precisions : array
    """
    precisions = check_array(precisions, dtype=[np.float64, np.float32],
                             ensure_2d=False,
                             allow_nd=covariance_type == 'full')


    precisions_shape = {'full': (n_components, n_features, n_features),
                        'tied': (n_features, n_features),
                        'diag': (n_components, n_features),
                        'spherical': (n_components,)}
    _check_shape(precisions, precisions_shape[covariance_type],
                 '%s precision' % covariance_type)


    _check_precisions = {'full': _check_precisions_full,
                         'tied': _check_precision_matrix,
                         'diag': _check_precision_positivity,
                         'spherical': _check_precision_positivity}
    _check_precisions[covariance_type](precisions, covariance_type)
    return precisions




###############################################################################
# Gaussian mixture parameters estimators (used by the M-Step)


def _estimate_gaussian_covariances_full(resp, X, nk, means, reg_covar):
    """Estimate the full covariance matrices.


    Parameters
    ----------
    resp : array-like, shape (n_samples, n_components)


    X : array-like, shape (n_samples, n_features)


    nk : array-like, shape (n_components,)


    means : array-like, shape (n_components, n_features)


    reg_covar : float


    Returns
    -------
    covariances : array, shape (n_components, n_features, n_features)
        The covariance matrix of the current components.
    """
    n_components, n_features = means.shape
    covariances = np.empty((n_components, n_features, n_features))
    for k in range(n_components):
        diff = X - means[k]
        covariances[k] = np.dot(resp[:, k] * diff.T, diff) / nk[k]
        covariances[k].flat[::n_features + 1] += reg_covar
    return covariances




def _estimate_gaussian_covariances_tied(resp, X, nk, means, reg_covar):
    """Estimate the tied covariance matrix.


    Parameters
    ----------
    resp : array-like, shape (n_samples, n_components)


    X : array-like, shape (n_samples, n_features)


    nk : array-like, shape (n_components,)


    means : array-like, shape (n_components, n_features)


    reg_covar : float


    Returns
    -------
    covariance : array, shape (n_features, n_features)
        The tied covariance matrix of the components.
    """
    avg_X2 = np.dot(X.T, X)
    avg_means2 = np.dot(nk * means.T, means)
    covariance = avg_X2 - avg_means2
    covariance /= nk.sum()
    covariance.flat[::len(covariance) + 1] += reg_covar
    return covariance




def _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar):
    """Estimate the diagonal covariance vectors.


    Parameters
    ----------
    responsibilities : array-like, shape (n_samples, n_components)


    X : array-like, shape (n_samples, n_features)


    nk : array-like, shape (n_components,)


    means : array-like, shape (n_components, n_features)


    reg_covar : float


    Returns
    -------
    covariances : array, shape (n_components, n_features)
        The covariance vector of the current components.
    """
    avg_X2 = np.dot(resp.T, X * X) / nk[:, np.newaxis]
    avg_means2 = means ** 2
    avg_X_means = means * np.dot(resp.T, X) / nk[:, np.newaxis]
    return avg_X2 - 2 * avg_X_means + avg_means2 + reg_covar




def _estimate_gaussian_covariances_spherical(resp, X, nk, means, reg_covar):
    """Estimate the spherical variance values.


    Parameters
    ----------
    responsibilities : array-like, shape (n_samples, n_components)


    X : array-like, shape (n_samples, n_features)


    nk : array-like, shape (n_components,)


    means : array-like, shape (n_components, n_features)


    reg_covar : float


    Returns
    -------
    variances : array, shape (n_components,)
        The variance values of each components.
    """
    return _estimate_gaussian_covariances_diag(resp, X, nk,
                                               means, reg_covar).mean(1)




def _estimate_gaussian_parameters(X, resp, reg_covar, covariance_type):
    """Estimate the Gaussian distribution parameters.


    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        The input data array.


    resp : array-like, shape (n_samples, n_components)
        The responsibilities for each data sample in X.


    reg_covar : float
        The regularization added to the diagonal of the covariance matrices.


    covariance_type : {'full', 'tied', 'diag', 'spherical'}
        The type of precision matrices.


    Returns
    -------
    nk : array-like, shape (n_components,)
        The numbers of data samples in the current components.


    means : array-like, shape (n_components, n_features)
        The centers of the current components.


    covariances : array-like
        The covariance matrix of the current components.
        The shape depends of the covariance_type.
    """
    nk = resp.sum(axis=0) + 10 * np.finfo(resp.dtype).eps
    means = np.dot(resp.T, X) / nk[:, np.newaxis]
    covariances = {"full": _estimate_gaussian_covariances_full,
                   "tied": _estimate_gaussian_covariances_tied,
                   "diag": _estimate_gaussian_covariances_diag,
                   "spherical": _estimate_gaussian_covariances_spherical
                   }[covariance_type](resp, X, nk, means, reg_covar)
    return nk, means, covariances




def _compute_precision_cholesky(covariances, covariance_type):
    """Compute the Cholesky decomposition of the precisions.


    Parameters
    ----------
    covariances : array-like
        The covariance matrix of the current components.
        The shape depends of the covariance_type.


    covariance_type : {'full', 'tied', 'diag', 'spherical'}
        The type of precision matrices.


    Returns
    -------
    precisions_cholesky : array-like
        The cholesky decomposition of sample precisions of the current
        components. The shape depends of the covariance_type.
    """
    estimate_precision_error_message = (
        "Fitting the mixture model failed because some components have "
        "ill-defined empirical covariance (for instance caused by singleton "
        "or collapsed samples). Try to decrease the number of components, "
        "or increase reg_covar.")


    if covariance_type in 'full':
        n_components, n_features, _ = covariances.shape
        precisions_chol = np.empty((n_components, n_features, n_features))
        for k, covariance in enumerate(covariances):
            try:
                cov_chol = linalg.cholesky(covariance, lower=True)
            except linalg.LinAlgError:
                raise ValueError(estimate_precision_error_message)
            precisions_chol[k] = linalg.solve_triangular(cov_chol,
                                                         np.eye(n_features),
                                                         lower=True).T
    elif covariance_type == 'tied':
        _, n_features = covariances.shape
        try:
            cov_chol = linalg.cholesky(covariances, lower=True)
        except linalg.LinAlgError:
            raise ValueError(estimate_precision_error_message)
        precisions_chol = linalg.solve_triangular(cov_chol, np.eye(n_features),
                                                  lower=True).T
    else:
        if np.any(np.less_equal(covariances, 0.0)):
            raise ValueError(estimate_precision_error_message)
        precisions_chol = 1. / np.sqrt(covariances)
    return precisions_chol




###############################################################################
# Gaussian mixture probability estimators
def _compute_log_det_cholesky(matrix_chol, covariance_type, n_features):
    """Compute the log-det of the cholesky decomposition of matrices.


    Parameters
    ----------
    matrix_chol : array-like,
        Cholesky decompositions of the matrices.
        'full' : shape of (n_components, n_features, n_features)
        'tied' : shape of (n_features, n_features)
        'diag' : shape of (n_components, n_features)
        'spherical' : shape of (n_components,)


    covariance_type : {'full', 'tied', 'diag', 'spherical'}


    n_features : int
        Number of features.


    Returns
    -------
    log_det_precision_chol : array-like, shape (n_components,)
        The determinant of the precision matrix for each component.
    """
    if covariance_type == 'full':
        n_components, _, _ = matrix_chol.shape
        log_det_chol = (np.sum(np.log(
            matrix_chol.reshape(
                n_components, -1)[:, ::n_features + 1]), 1))


    elif covariance_type == 'tied':
        log_det_chol = (np.sum(np.log(np.diag(matrix_chol))))


    elif covariance_type == 'diag':
        log_det_chol = (np.sum(np.log(matrix_chol), axis=1))


    else:
        log_det_chol = n_features * (np.log(matrix_chol))


    return log_det_chol




def _estimate_log_gaussian_prob(X, means, precisions_chol, covariance_type):
    """Estimate the log Gaussian probability.


    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)


    means : array-like, shape (n_components, n_features)


    precisions_chol : array-like,
        Cholesky decompositions of the precision matrices.
        'full' : shape of (n_components, n_features, n_features)
        'tied' : shape of (n_features, n_features)
        'diag' : shape of (n_components, n_features)
        'spherical' : shape of (n_components,)


    covariance_type : {'full', 'tied', 'diag', 'spherical'}


    Returns
    -------
    log_prob : array, shape (n_samples, n_components)
    """
    n_samples, n_features = X.shape
    n_components, _ = means.shape
    # det(precision_chol) is half of det(precision)
    log_det = _compute_log_det_cholesky(
        precisions_chol, covariance_type, n_features)


    if covariance_type == 'full':
        log_prob = np.empty((n_samples, n_components))
        for k, (mu, prec_chol) in enumerate(zip(means, precisions_chol)):
            y = np.dot(X, prec_chol) - np.dot(mu, prec_chol)
            log_prob[:, k] = np.sum(np.square(y), axis=1)


    elif covariance_type == 'tied':
        log_prob = np.empty((n_samples, n_components))
        for k, mu in enumerate(means):
            y = np.dot(X, precisions_chol) - np.dot(mu, precisions_chol)
            log_prob[:, k] = np.sum(np.square(y), axis=1)


    elif covariance_type == 'diag':
        precisions = precisions_chol ** 2
        log_prob = (np.sum((means ** 2 * precisions), 1) -
                    2. * np.dot(X, (means * precisions).T) +
                    np.dot(X ** 2, precisions.T))


    elif covariance_type == 'spherical':
        precisions = precisions_chol ** 2
        log_prob = (np.sum(means ** 2, 1) * precisions -
                    2 * np.dot(X, means.T * precisions) +
                    np.outer(row_norms(X, squared=True), precisions))
    return -.5 * (n_features * np.log(2 * np.pi) + log_prob) + log_det




class GaussianMixture(BaseMixture):
    """Gaussian Mixture.


    Representation of a Gaussian mixture model probability distribution.
    This class allows to estimate the parameters of a Gaussian mixture
    distribution.


    .. versionadded:: 0.18
    *GaussianMixture*.


    Read more in the :ref:`User Guide <gmm>`.


    Parameters
    ----------
    n_components : int, defaults to 1.
        The number of mixture components.


    covariance_type : {'full', 'tied', 'diag', 'spherical'},
            defaults to 'full'.
        String describing the type of covariance parameters to use.
        Must be one of::


            'full' (each component has its own general covariance matrix),
            'tied' (all components share the same general covariance matrix),
            'diag' (each component has its own diagonal covariance matrix),
            'spherical' (each component has its own single variance).


    tol : float, defaults to 1e-3.
        The convergence threshold. EM iterations will stop when the
        lower bound average gain is below this threshold.


    reg_covar : float, defaults to 0.
        Non-negative regularization added to the diagonal of covariance.
        Allows to assure that the covariance matrices are all positive.


    max_iter : int, defaults to 100.
        The number of EM iterations to perform.


    n_init : int, defaults to 1.
        The number of initializations to perform. The best results are kept.


    init_params : {'kmeans', 'random'}, defaults to 'kmeans'.
        The method used to initialize the weights, the means and the
        precisions.
        Must be one of::


            'kmeans' : responsibilities are initialized using kmeans.
            'random' : responsibilities are initialized randomly.


    weights_init : array-like, shape (n_components, ), optional
        The user-provided initial weights, defaults to None.
        If it None, weights are initialized using the `init_params` method.


    means_init: array-like, shape (n_components, n_features), optional
        The user-provided initial means, defaults to None,
        If it None, means are initialized using the `init_params` method.


    precisions_init: array-like, optional.
        The user-provided initial precisions (inverse of the covariance
        matrices), defaults to None.
        If it None, precisions are initialized using the 'init_params' method.
        The shape depends on 'covariance_type'::


            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'


    random_state : RandomState or an int seed, defaults to None.
        A random number generator instance.


    warm_start : bool, default to False.
        If 'warm_start' is True, the solution of the last fitting is used as
        initialization for the next call of fit(). This can speed up
        convergence when fit is called several time on similar problems.


    verbose : int, default to 0.
        Enable verbose output. If 1 then it prints the current
        initialization and each iteration step. If greater than 1 then
        it prints also the log probability and the time needed
        for each step.


    verbose_interval : int, default to 10.
        Number of iteration done before the next print.


    Attributes
    ----------
    weights_ : array-like, shape (n_components,)
        The weights of each mixture components.


    means_ : array-like, shape (n_components, n_features)
        The mean of each mixture component.


    covariances_ : array-like
        The covariance of each mixture component.
        The shape depends on `covariance_type`::


            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'


    precisions_ : array-like
        The precision matrices for each component in the mixture. A precision
        matrix is the inverse of a covariance matrix. A covariance matrix is
        symmetric positive definite so the mixture of Gaussian can be
        equivalently parameterized by the precision matrices. Storing the
        precision matrices instead of the covariance matrices makes it more
        efficient to compute the log-likelihood of new samples at test time.
        The shape depends on `covariance_type`::


            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'


    precisions_cholesky_ : array-like
        The cholesky decomposition of the precision matrices of each mixture
        component. A precision matrix is the inverse of a covariance matrix.
        A covariance matrix is symmetric positive definite so the mixture of
        Gaussian can be equivalently parameterized by the precision matrices.
        Storing the precision matrices instead of the covariance matrices makes
        it more efficient to compute the log-likelihood of new samples at test
        time. The shape depends on `covariance_type`::


            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'


    converged_ : bool
        True when convergence was reached in fit(), False otherwise.


    n_iter_ : int
        Number of step used by the best fit of EM to reach the convergence.


    lower_bound_ : float
        Log-likelihood of the best fit of EM.


    See Also
    --------
    BayesianGaussianMixture : Gaussian mixture model fit with a variational
        inference.
    """


    def __init__(self, n_components=1, covariance_type='full', tol=1e-3,
                 reg_covar=1e-6, max_iter=100, n_init=1, init_params='kmeans',
                 weights_init=None, means_init=None, precisions_init=None,
                 random_state=None, warm_start=False,
                 verbose=0, verbose_interval=10):
        super(GaussianMixture, self).__init__(
            n_components=n_components, tol=tol, reg_covar=reg_covar,
            max_iter=max_iter, n_init=n_init, init_params=init_params,
            random_state=random_state, warm_start=warm_start,
            verbose=verbose, verbose_interval=verbose_interval)


        self.covariance_type = covariance_type
        self.weights_init = weights_init
        self.means_init = means_init
        self.precisions_init = precisions_init


    def _check_parameters(self, X):
        """Check the Gaussian mixture parameters are well defined."""
        _, n_features = X.shape
        if self.covariance_type not in ['spherical', 'tied', 'diag', 'full']:
            raise ValueError("Invalid value for 'covariance_type': %s "
                             "'covariance_type' should be in "
                             "['spherical', 'tied', 'diag', 'full']"
                             % self.covariance_type)


        if self.weights_init is not None:
            self.weights_init = _check_weights(self.weights_init,
                                               self.n_components)


        if self.means_init is not None:
            self.means_init = _check_means(self.means_init,
                                           self.n_components, n_features)


        if self.precisions_init is not None:
            self.precisions_init = _check_precisions(self.precisions_init,
                                                     self.covariance_type,
                                                     self.n_components,
                                                     n_features)


    def _initialize(self, X, resp):
        """Initialization of the Gaussian mixture parameters.


        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)


        resp : array-like, shape (n_samples, n_components)
        """
        n_samples, _ = X.shape


        weights, means, covariances = _estimate_gaussian_parameters(
            X, resp, self.reg_covar, self.covariance_type)
        weights /= n_samples


        self.weights_ = (weights if self.weights_init is None
                         else self.weights_init)
        self.means_ = means if self.means_init is None else self.means_init


        if self.precisions_init is None:
            self.covariances_ = covariances
            self.precisions_cholesky_ = _compute_precision_cholesky(
                covariances, self.covariance_type)
        elif self.covariance_type == 'full':
            self.precisions_cholesky_ = np.array(
                [linalg.cholesky(prec_init, lower=True)
                 for prec_init in self.precisions_init])
        elif self.covariance_type == 'tied':
            self.precisions_cholesky_ = linalg.cholesky(self.precisions_init,
                                                        lower=True)
        else:
            self.precisions_cholesky_ = self.precisions_init


    def _m_step(self, X, log_resp):
        """M step.


        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)


        log_resp : array-like, shape (n_samples, n_components)
            Logarithm of the posterior probabilities (or responsibilities) of
            the point of each sample in X.
        """
        n_samples, _ = X.shape
        self.weights_, self.means_, self.covariances_ = (
            _estimate_gaussian_parameters(X, np.exp(log_resp), self.reg_covar,
                                          self.covariance_type))
        self.weights_ /= n_samples
        self.precisions_cholesky_ = _compute_precision_cholesky(
            self.covariances_, self.covariance_type)


    def _estimate_log_prob(self, X):
        return _estimate_log_gaussian_prob(
            X, self.means_, self.precisions_cholesky_, self.covariance_type)


    def _estimate_log_weights(self):
        return np.log(self.weights_)


    def _compute_lower_bound(self, _, log_prob_norm):
        return log_prob_norm


    def _check_is_fitted(self):
        check_is_fitted(self, ['weights_', 'means_', 'precisions_cholesky_'])


    def _get_parameters(self):
        return (self.weights_, self.means_, self.covariances_,
                self.precisions_cholesky_)


    def _set_parameters(self, params):
        (self.weights_, self.means_, self.covariances_,
         self.precisions_cholesky_) = params


        # Attributes computation
        _, n_features = self.means_.shape


        if self.covariance_type == 'full':
            self.precisions_ = np.empty(self.precisions_cholesky_.shape)
            for k, prec_chol in enumerate(self.precisions_cholesky_):
                self.precisions_[k] = np.dot(prec_chol, prec_chol.T)


        elif self.covariance_type == 'tied':
            self.precisions_ = np.dot(self.precisions_cholesky_,
                                      self.precisions_cholesky_.T)
        else:
            self.precisions_ = self.precisions_cholesky_ ** 2


    def _n_parameters(self):
        """Return the number of free parameters in the model."""
        _, n_features = self.means_.shape
        if self.covariance_type == 'full':
            cov_params = self.n_components * n_features * (n_features + 1) / 2.
        elif self.covariance_type == 'diag':
            cov_params = self.n_components * n_features
        elif self.covariance_type == 'tied':
            cov_params = n_features * (n_features + 1) / 2.
        elif self.covariance_type == 'spherical':
            cov_params = self.n_components
        mean_params = n_features * self.n_components
        return int(cov_params + mean_params + self.n_components - 1)


    def bic(self, X):
        """Bayesian information criterion for the current model on the input X.


        Parameters
        ----------
        X : array of shape (n_samples, n_dimensions)


        Returns
        -------
        bic: float
            The lower the better.
        """
        return (-2 * self.score(X) * X.shape[0] +
                self._n_parameters() * np.log(X.shape[0]))


    def aic(self, X):
        """Akaike information criterion for the current model on the input X.


        Parameters
        ----------
        X : array of shape (n_samples, n_dimensions)


        Returns
        -------
        aic: float
            The lower the better.
        """
        return -2 * self.score(X) * X.shape[0] + 2 * self._n_parameters()
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
属于网络下载资源,感谢原作者的贡献。 ##目录介绍 - **DeepLearning Tutorials** 这个文件夹下包含一些深度学习算法的实现代码,以及具体的应用实例,包含: Keras使用进阶。介绍了怎么保存训练好的CNN模型,怎么将CNN用作特征提取,怎么可视化卷积图。 [keras_usage]介绍了一个简单易用的深度学习框架keras,用经典的Mnist分类问题对该框架的使用进行说明,训练一个CNN,总共不超过30行代码。 将卷积神经网络CNN应用于人脸识别的一个demo,人脸数据库采用olivettifaces,CNN模型参考LeNet5,基于python+theano+numpy+PIL实现。 CNN卷积神经网络算法的实现,模型为简化版的LeNet,应用于MNIST数据集(手写数字),来自于DeepLearning.net上的一个教程,基于python+theano 多层感知机算法的实现,代码实现了最简单的三层感知机,并应用于MNIST数据集。 [Softmax_sgd(or logistic_sgd)]Softmax回归算法的实现,应用于MNIST数据集,基于Python+theano。 - **PCA** 基于python+numpy实现了主成份分析PCA算法 - **kNN** 基于python+numpy实现了K近邻算法,并将其应用在MNIST数据集上, - **logistic regression** - 基于C++以及线性代数库Eigen实现的logistic回归,[代码] - 基于python+numpy实现了logistic回归(二类别) - **ManifoldLearning** 运用多种流形学习方法将高维数据降维,并用matplotlib将数据可视化(2维和3维) - **SVM** - **GMM** GMM和k-means作为EM算法的应用,在某种程度有些相似之处,不过GMM明显学习出一些概率密度函数来,结合相关理解写成python版本 - **DecisionTree** Python、Numpy、Matplotlib实现的ID3、C4.5,其中C4.5有待完善,后续加入CART。 - **KMeans** 介绍了聚类分析中最常用的KMeans算法(及二分KMeans算法),基于NumPy的算法实现,以及基于Matplotlib的聚类过程可视化。 朴素贝叶斯算法的理论推导,以及三种常见模型(多项式模型,高斯模型,伯努利模型)的介绍与编程实现(基于Python,Numpy)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值