Linux C++ JNI封装、打包成jar包供Java调用详细介绍

在前面 Android专栏 中详细介绍了如何在Android Studio中调用通过jni封装的c++库。

在Android使用 opencv c++代码,需要准备opencv4android,也就是c++的任何代码,是使用Android NDK编译的,相当于在windows/mac上使用Android stdido交叉编译。

本文再介绍服务端的使用方式,c++通过jni封装的库,直接被java后端服务代码调用。 这里c++依赖库都是linux主机上,jni有关库也都是linux上的,因此就不存在交叉编译。

最后,还将项目打包成 jar包。

实际项目参考 GitCode FLowMeasurem

1、环境准备

1.1、java sdk安装

这里直接使用apt安装(可能还需要配置环境变量),

sudo apt install openjdk-8-jdk

之后使用 javacjavah 工具,能正常使用即可。

1.2、opencv

简单起见,直接

sudo apt install libopencv-dev

1.3、gcc/g++ 和 cmake

不赘述。

2、项目实现

2.1、java端代码

我们定义一个 OpenCVJNI.java 类,里面包含native函数,以及测试代码main函数。

public class OpenCVJNI {
    // 加载本地库
    static {
        System.loadLibrary("OpenCVJNI");
    }
    
    // 声明本地方法
    public native int detectFaces(String imagePath, String outputPath);
    
    // 测试main函数
    public static void main(String[] args) {
        if (args.length < 2) {
            System.out.println("Usage: java OpenCVJNI <inputImage> <outputImage>");
            return;
        }
        
        OpenCVJNI ocv = new OpenCVJNI();
        int faceCount = ocv.detectFaces(args[0], args[1]);
        System.out.println("Detected " + faceCount + " faces.");
    }
}

2.2、生成头文件

编译Java类的命令 javac OpenCVJNI.java 此时,会在当前目录生成 OpenCVJNI.class 文件;
继续执行 javah -jni OpenCVJNI 会继续在当前目录生成 OpenCVJNI.h 文件。

我们可以使用 javac OpenCVJNI.java -h ./ 直接在当前目录生成class文件 ( -s 指定class保存目录), 和 -h 指定目录下保存生的 h 文件。

内容如下

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class OpenCVJNI */

#ifndef _Included_OpenCVJNI
#define _Included_OpenCVJNI
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class:     OpenCVJNI
 * Method:    detectFaces
 * Signature: (Ljava/lang/String;Ljava/lang/String;)I
 */
JNIEXPORT jint JNICALL Java_OpenCVJNI_detectFaces
  (JNIEnv *, jobject, jstring, jstring);

#ifdef __cplusplus
}
#endif
#endif

2.4、C++实现

#include <jni.h>
#include <opencv2/opencv.hpp>
#include "OpenCVJNI.h"

using namespace cv;

JNIEXPORT jint JNICALL Java_OpenCVJNI_detectFaces
  (JNIEnv *env, jobject obj, jstring imagePath, jstring outputPath) {
    // 将Java字符串转换为C字符串
    const char* inputPath = env->GetStringUTFChars(imagePath, 0);
    const char* outPath = env->GetStringUTFChars(outputPath, 0);
    
    // 加载图像
    Mat image = imread(inputPath);
    if(image.empty()) {
        env->ReleaseStringUTFChars(imagePath, inputPath);
        env->ReleaseStringUTFChars(outputPath, outPath);
        return -1;
    }
    
    // 转换为灰度图像
    Mat gray;
    cvtColor(image, gray, COLOR_BGR2GRAY);
    
    // 加载预训练的人脸检测器
    CascadeClassifier faceDetector;
    String faceCascadePath = "/usr/share/opencv4/haarcascades/haarcascade_frontalface_default.xml";
    if(!faceDetector.load(faceCascadePath)) {
        env->ReleaseStringUTFChars(imagePath, inputPath);
        env->ReleaseStringUTFChars(outputPath, outPath);
        return -2;
    }
    
    // 检测人脸
    std::vector<Rect> faces;
    faceDetector.detectMultiScale(gray, faces, 1.1, 3, 0, Size(30, 30));
    
    // 在检测到的人脸周围绘制矩形
    for(size_t i = 0; i < faces.size(); i++) {
        rectangle(image, faces[i], Scalar(0, 255, 0), 2);
    }
    
    // 保存结果图像
    imwrite(outPath, image);
    
    // 释放资源
    env->ReleaseStringUTFChars(imagePath, inputPath);
    env->ReleaseStringUTFChars(outputPath, outPath);
    
    return faces.size();
}

2.5、编译共享库

2.5.1、命令行编译

使用g++命令行编译

g++ -I"$JAVA_HOME/include" -I"$JAVA_HOME/include/linux" -I/usr/include/opencv4 \
    -shared -fPIC -o libOpenCVJNI.so OpenCVJNI.cpp \
    -lopencv_core -lopencv_imgproc -lopencv_objdetect -lopencv_highgui

若提示错误找不到jni有关头文件,请配置环境变量 JAVA_HOME, 例如这里的为 /usr/lib/jvm/java-8-openjdk-amd64

编译之后,会在当前目录下生成 libOpenCVJNI.so 文件。

2.5.2、cmake编译

在当前目录创建 CMakeLists.txt:

cmake_minimum_required(VERSION 3.5)
project(OpenCVJNI)

find_package(Java REQUIRED)
find_package(JNI REQUIRED)
find_package(OpenCV REQUIRED)

include_directories(${JNI_INCLUDE_DIRS})
include_directories(${OpenCV_INCLUDE_DIRS})

add_library(OpenCVJNI SHARED OpenCVJNI.cpp)
target_link_libraries(OpenCVJNI ${OpenCV_LIBS})

执行以下命令,在当build目录下生成 libOpenCVJNI.so 文件。

mkdir build
cd build
cmake ..
make

2.6、测试运行

以cmake方式为例,给出当前项目目录结构

OpenCVJNIProject/
├── CMakeLists.txt
├── lena.png
├── OpenCVJNI.java
├── OpenCVJNI.cpp
├── OpenCVJNI.h
└── build/
    └── libOpenCVJNI.so

我们运行时,需要将编译生成的 libOpenCVJNI.so ,复制到Java库路径或者指定路径,之后在OpenCVJNI.class的目录下执行。

  • 方式1
cd build
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:.
cd ..
java -Djava.library.path=. OpenCVJNI ../lena.png output.jpg
  • 方式2

在项目目录下指定so目录path

java -Djava.library.path=./build OpenCVJNI ../lena.png output.jpg
  • 方式3

将 OpenCVJNI.class 和 libOpenCVJNI.so 放在同一目录(当前命令也包含图片),直接运行

java OpenCVJNI ../lena.png output.jpg

在这里插入图片描述

3、导出Jar包给后端直接使用

前面OpenCVJNI.java 就包含了接口,也包含了测试代码。 这里,我们将前面人脸识别的接口进行封装成一个jar包,供其他java项目直接调用。

3.1、项目结构

我们按照java调用的格式创建一个目录结构

MyOpenCVProject/
├── native/                  # 本地代码(C/C++)目录
│   ├── CMakeLists.txt       # C++构建配置
│   ├── src/                 # C++源代码
│   └── lib/                 # 生成的动态库
├── java/                    # Java代码目录
│   ├── src/                 # Java源代码
│   └── target/              # 构建输出
└── dist/                    # 最终分发目录

3.2、项目准备

3.2.1、创建Java类

在创建目录 java/src/com/magicsky/OpenCVWrapper,在当前包下创建OpenCVWrapper.java 文件.

package com.magicsky.OpenCVWrapper;

public class OpenCVWrapper {
    static {
        System.loadLibrary("opencv_jni"); // 加载动态库
    }
    
    // 声明本地方法
    public native int detectFaces(String inputPath, String outputPath);
    
    // 辅助方法:获取当前平台对应的库名称
    private static String getLibraryName() {
        String osName = System.getProperty("os.name").toLowerCase();
        if (osName.contains("linux")) {
            return "opencv_jni";
        } else if (osName.contains("win")) {
            return "opencv_jni";
        } else if (osName.contains("mac")) {
            return "opencv_jni";
        }
        return "opencv_jni";
    }
}

3.2.2、生成JNI头文件

首先编译生成class文件,并导出头文件,这里一步到位

cd java/src
javac -h ../../native/src com/magicsky/OpenCVWrapper/OpenCVWrapper.java

运行之后,会在 OpenCVWrapper.java 同级目录下生成 OpenCVWrapper.class文件。

类似Android中,在 native/src下创建了一个文件 com_magicsky_OpenCVWrapper_OpenCVWrapper.h

3.2.3、实现c++代码

native/src/下创建opencv_jni.cpp 代码,除了引用目录和函数命名,其他内容和前述 OpenCVJNI.java 内容一致。

#include <jni.h>
#include <opencv2/opencv.hpp>
#include "com_magicsky_OpenCVWrapper_OpenCVWrapper.h"

using namespace cv;

JNIEXPORT jint JNICALL Java_com_magicsky_OpenCVWrapper_OpenCVWrapper_detectFaces
  (JNIEnv *env, jobject obj, jstring imagePath, jstring outputPath) {
    // 实现代码与之前示例相同
    // ...
}

3.2.4、编写CMake构建文件

cmake_minimum_required(VERSION 3.5)
project(OpenCVJNI)

find_package(Java REQUIRED)
find_package(JNI REQUIRED)
find_package(OpenCV REQUIRED)

include_directories(${JNI_INCLUDE_DIRS})
include_directories(${OpenCV_INCLUDE_DIRS})
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/src)

set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/lib)

add_library(opencv_jni SHARED src/opencv_jni.cpp)
target_link_libraries(opencv_jni ${OpenCV_LIBS})

3.2.5、构建动态库

cd native
mkdir -p build
cd build
cmake …
make
生成的动态库会在native/lib/目录下,名为libopencv_jni.so

查看项目目录结构主要文件如下
在这里插入图片描述

3.3、 打包jar

有了以上so文件,按照jar包规则将需要的数据组织起来。

3.3.1、编译java代码

其实就是生成class文件。可以之前复制之前生成的。这里使用命令 javac -d 生成并存入指定位置。

cd java/src
javac -d ../target com/magicsky/OpenCVWrapper/OpenCVWrapper.java

运行后在 java/target 目录下户集成一个多级目录,并创建文件 java/target/com/magicsky/OpenCVWrapper/OpenCVWrapper.class

-s 的结果为 java/target/OpenCVWrapper.class

3.3.2、创建MANIFEST.MF

创建 java/target/META-INF/ 目录,并添加 `MANIFEST.MF文件 ,内容如下

Manifest-Version: 1.0
Class-Path: .

3.3.3 打包JAR

先试用 jar 工具 打包 MANIFEST.MF 和 OpenCVWrapper.class ,命令如下

mkdir dist
cd java/target
jar cvfm ../../dist/OpenCVWrapper.jar META-INF/MAINFEST.MF com/

运行结果如下

$ mkdir dist
$ cd java/target/
$ jar cvfm ../../dist/OpenCVWrapper.jar META-INF/MAINFEST.MF com/
added manifest
adding: com/(in = 0) (out= 0)(stored 0%)
adding: com/magicsky/(in = 0) (out= 0)(stored 0%)
adding: com/magicsky/OpenCVWrapper/(in = 0) (out= 0)(stored 0%)
adding: com/magicsky/OpenCVWrapper/OpenCVWrapper.class(in = 829) (out= 507)(deflated 38%)

3.3.4、jar包中添加so动态库

将动态库打包到JAR中特定目录(如native/linux-x86_64):

cd dist
mkdir -p native/linux-x86_64
cp ../native/lib/libopencv_jni.so native/linux-x86_64/

jar uf OpenCVWrapper.jar native/linux-x86_64/libopencv_jni.so

打包好后下载到本地,解压查看jar文件结构和内容
在这里插入图片描述
至此,jar打包完成。

还可以使用更高级的 Maven/Gradle 构建

3.4、测试jar包

准备目录结构,并拷贝对应文件

$ tree
.
├── dist
│   ├── native
│   │   └── linux-x86_64
│   │       └── libopencv_jni.so
│   └── OpenCVWrapper.jar
├── lena.png
├── Main.java

在项目根目录中添加 Main.java 文件,内容为

import com.magicsky.OpenCVWrapper.OpenCVWrapper;

public class Main {
    public static void main(String[] args) {
        OpenCVWrapper wrapper = new OpenCVWrapper();
        int faceCount = wrapper.detectFaces("lena.png", "output.jpg");
        System.out.println("Detected " + faceCount + " faces.");
    }
}

使用 javac -cp dist/OpenCVWrapper.jar Main.java 编译生成 Main.class 文件。

之后执行命令,需要指定so目录, jar 目录等 (根目录下执行)
java -Djava.library.path=dist/native/linux-x86_64 -cp dist/OpenCVWrapper.jar:. Main

运行成功,截图如下
在这里插入图片描述

3.5、包声明问题

前面的测试代码,Main.java在根目录,不存在包声明。下面结构中,存在一个test包。那么在Main.java文件第一行为 "package test;"

$ tree
.
├── dist
│   ├── native
│   │   └── linux-x86_64
│   │       └── libopencv_jni.so
│   └── OpenCVWrapper.jar
├── lena.png
├── test
│   ├── Main.class
│   └── Main.java

有包声明时,命令需要修改 (根目录下执行,包声明中最上一层)
java -Djava.library.path=./dist/native/linux-x86_64 -cp ./dist/OpenCVWrapper.jar:. test.Main

4、优化 Jar 包代码和结构

前面jar包在使用时,没有使用jar包中的 native/lib/libopencv_jni.so 文件,而是拷贝了一份运行时再指定路径。

我们应该在用户使用该jar时,解压jar中的so并使用。
修改 java 文件如下 :

package com.magicsky.OpenCVWrapper;

import java.io.*;
import java.nio.file.*;

public class OpenCVWrapper {
    // static {
    //     System.loadLibrary("opencv_jni"); // 加载动态库
    // }

    static {
        loadLibrary();
    }
    
    private static void loadLibrary() {
        try {
            String libName = getLibraryName();
            String libPath = "/native/" + getPlatform() + "/lib" + libName + ".so";
            
            // 从JAR中提取库到临时目录
            InputStream in = OpenCVWrapper.class.getResourceAsStream(libPath);
            if (in == null) {
                throw new RuntimeException("Native library not found in JAR: " + libPath);
            }
            
            Path tempDir = Files.createTempDirectory("native-lib");
            tempDir.toFile().deleteOnExit();
            Path tempLib = tempDir.resolve("lib" + libName + ".so");
            
            Files.copy(in, tempLib, StandardCopyOption.REPLACE_EXISTING);
            in.close();
            
            // 加载库
            System.load(tempLib.toAbsolutePath().toString());
        } catch (IOException e) {
            throw new RuntimeException("Failed to load native library", e);
        }
    }
    
    // 声明本地方法
    public native int detectFaces(String inputPath, String outputPath);
    
    // 辅助方法:获取当前平台对应的库名称
    private static String getLibraryName() {
        String osName = System.getProperty("os.name").toLowerCase();
        if (osName.contains("linux")) {
            return "opencv_jni";
        } else if (osName.contains("win")) {
            return "opencv_jni";
        } else if (osName.contains("mac")) {
            return "opencv_jni";
        }
        return "opencv_jni";
    }

    private static String getPlatform() {
        String osName = System.getProperty("os.name").toLowerCase();
        String osArch = System.getProperty("os.arch").toLowerCase();
        
        if (osName.contains("linux")) {
            return "linux-" + osArch;
        } else if (osName.contains("win")) {
            return "win-" + osArch;
        } else if (osName.contains("mac")) {
            return "mac-" + osArch;
        }
        throw new UnsupportedOperationException("Unsupported platform: " + osName + "/" + osArch);
    }
}

重新编译并打包

cd java/src
javac -d ../target/ com/magicsky/OpenCVWrapper/OpenCVWrapper.java
cd ../target
jar cvfm ../../dist/OpenCVWrapper.jar META-INF/MAINFEST.MF com/
cd ../../dist
jar uf opencv-wrapper.jar native/linux-x86_64/libopencv_jni.so
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

aworkholic

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值