详解Python中numpy.loadtxt()读取txt文件

为了方便使用和记忆,有时候我们会把 numpy.loadtxt() 缩写成np.loadtxt() ,本篇文章主要讲解用它来读取txt文件。

读取txt文件我们通常使用 numpy 中的 loadtxt()函数

numpy.loadtxt(fname, dtype=, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0)

注:loadtxt的功能是读入数据文件,这里的数据文件要求每一行数据的格式相同。

也就是说对于下面这样的数据是不符合条件的:

123

1 2 4 3 5

接下来举例讲解函数的功能:

1、简单的读取

test.txt

test.txt

1 2 3 4 
2 3 4 5
3 4 5 6
4 5 6 7

import numpy as np
a = np.loadtxt('test.txt')#最普通的loadtxt
print(a)

输出:

[[1. 2. 3. 4.]
 [2. 3. 4. 5.]
 [3. 4. 5. 6.]
 [4. 5. 6. 7.]]
数组中的数都为浮点数,原因为Python默认的数字的数据类型为双精度浮点数 

2、skiprows=n:指跳过前n行

test.txt

A B C D
2 3 4 5
3 4 5 6
4 5 6 7

a = np.loadtxt('test.txt', skiprows=1, dtype=int)
print(a)

输出:

[[2 3 4 5]
 [3 4 5 6]
 [4 5 6 7]]

3、comment=‘#’:如果行的开头为#就会跳过该行

test.txt

A B C D
2 3 4 5
3 4 5 6
#A B C D
4 5 6 7

a = np.loadtxt('test.txt', skiprows=1, dtype=int, comments='#')
print(a)

输出:

[[2 3 4 5]
 [3 4 5 6]
 [4 5 6 7]]

4、usecols=[0,2]:是指只使用0,2两列,参数类型为list

a = np.loadtxt('test.txt', skiprows=1, dtype=int, comments='#',usecols=(0, 2), unpack=True)
print(a)

输出: 

[[2 3 4]
 [4 5 6]]

unpack是指会把每一列当成一个向量输出, 而不是合并在一起。 如果unpack为false或者参数的话输出结果如下:

[[2 4]
 [3 5]
 [4 6]]

test.txt

A, B, C, D
2, 3, 4, 5
3, 4, 5, 6
#A B C D
4, 5, 6, 7

5、delimiter:数据之间的分隔符。如使用逗号","。

6、converters:对数据进行预处理

def add_one(x):
    return int(x)+1    #注意到这里使用的字符的数据结构
a = np.loadtxt('test.txt', dtype=int, skiprows=1, converters={0:add_one}, comments='#', delimiter=',', usecols=(0, 2), unpack=True)
print a

def add_one(x):
    return int(x)+1    #注意到这里使用的字符的数据结构
a = np.loadtxt('test.txt', dtype=int, skiprows=1, converters={0:add_one}, comments='#', delimiter=',', usecols=(0, 2), unpack=True)
print a

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值