构造法求数列通项公式-01

前言

使用构造法求数列的通项公式,首先需要突破的是对 a n a_n an的内涵的理解和应用。

理解内涵

在数列的学习中,我们经常会见到这样的式子 a n + 1 - a n = m ( m 常数 ) , a_{n+1}-a_n = m(m常数), an+1an=m(m常数) 此时你一定会反应出数列 { a n } \{a_n\} {an}是等差数列,那么你有没有想过, a n a_n an除过可以是整式,还可以是分式,指数式,对数式,单项式,还可以是多项式等等,比如见到 S n + 1 - S n = m ( m 常数 ) , S_{n+1}-S_n = m(m常数), Sn+1Sn=m(m常数) 你还能看出来是等差数列吗,所以你还需要特别注意:对代数式 a n + 1 - a n = m a_{n+1}-a_n = m an+1an=m a n + 1 a n = m \cfrac{a_{n+1}}{a_n} = m anan+1=m ( m m m常数)中 a n a_n an的“内涵”的理解。以下引例加深对等差数列中字母内涵的理解:

1 a n + 1 - 1 a n = m \cfrac{1}{a_{n+1}}-\cfrac{1}{a_n} = m an+11an1=m,则数列 { 1 a n } \{\cfrac{1}{a_n}\} {an1}是首项为 1 a 1 \cfrac{1}{a_1} a11,公差为 m m m的等差数列;

1 S n + 1 - 1 S n = m \cfrac{1}{S_{n+1}}-\cfrac{1}{S_n} = m Sn+11Sn1=m,则数列 { 1 S n } \{\cfrac{1}{S_n}\} {Sn1}是首项为 1 a 1 \cfrac{1}{a_1} a11,公差为 m m m的等差数列;

a n + 1 n + 1 - a n n = m \cfrac{a_{n+1}}{n+1}-\cfrac{a_n}{n} = m n+1an+1nan=m,则数列 { a n n } \{\cfrac{a_n}{n}\} {nan}是首项为 a 1 1 \cfrac{a_1}{1} 1a1,公差为 m m m的等差数列;

n a n + 1 + ( n + 1 ) - n − 1 a n + n = m \cfrac{n}{a_{n+1}+(n+1)}-\cfrac{n-1}{a_n+n} = m an+1+(n+1)nan+nn1=m,则数列 { n − 1 a n + n } \{\cfrac{n-1}{a_n+n}\} {an+nn1}是首项为 1 − 1 a 1 + 1 \cfrac{1-1}{a_1+1} a1+111,公差为 m m m的等差数列;

( n + 1 ) a n + 1 − n a n = m (n+1)a_{n+1}-na_n=m (n+1)an+1nan=m, 则数列 { n ⋅ a n } \{n\cdot a_n\} {nan}是首项为 a 1 a_1 a1,公差为 m m m的等差数列;

a n + 1 2 - a n 2 = m a_{n+1}^2-a_n^2 = m an+12an2=m,则数列 { a n 2 } \{a_n^2\} {an2}是首项为 a 1 2 a_1^2 a12,公差为 m m m的等差数列;

log ⁡ m a n + 1 2 - l o g m a n 2 = p \log_m^{a_{n+1}^2}-log_m^ {a_n^2} = p logman+12logman2=p,则数列 { l o g m a n 2 } \{log_m^{a_n^2}\} {logman2}是首项为 l o g m a 1 2 log_m^{a_1^2} logma12,公差为 p p p的等差数列;

a n + 2 − 2 a n + 1 = a n + 1 − 2 a n a_{n+2}-2a_{n+1}=a_{n+1}-2a_n an+22an+1=an+12an,则数列 { a n + 1 − 2 a n } \{a_{n+1}-2a_n\} {an+12an}是首项为 a 2 − 2 a 1 a_2-2a_1 a22a1,公差为 0 0 0的等差数列;

以上所列举的凡此种种,都是等差数列,能用一个表达式刻画吗?

a n + 1 − a n = d , d 为常数 a_{n+1}-a_n=d,d为常数 an+1an=dd为常数

因此务必要求理解透彻 a n + 1 a_{n+1} an+1 a n a_n an的“内涵”;籍此理解:代数,就是用字母代替数字来思维的一门学科。

以下引例用于加深对等比数列的字母内涵的理解:

a n + 1 + 1 a n + 1 = m \cfrac{a_{n+1}+1}{a_n+1} = m an+1an+1+1=m, 则数列 { a n + 1 } \{a_n+1\} {an+1}是首项为 a 1 + 1 a_1+1 a1+1,公比为 m m m的等比数列;

a n + 1 + ( n + 1 ) a n + n = m \cfrac{a_{n+1}+(n+1)}{a_n + n} = m an+nan+1+(n+1)=m,则数列 { a n + n } \{a_n+n\} {an+n}是首项为 a 1 + 1 a_1+1 a1+1,公比为 m m m的等比数列;

a n + 1 2 a n 2 = m \cfrac{a_{n+1}^2}{a_n^2} = m an2an+12=m,则数列 { a n 2 } \{a_n^2\} {an2}是首项为 a 1 2 a_1^2 a12,公比为 m m m的等比数列;

a n + 2 − a n + 1 = 2 ( a n + 1 − a n ) a_{n+2}-a_{n+1}=2(a_{n+1}-a_n) an+2an+1=2(an+1an),则数列 { a n + 1 − a n } \{a_{n+1}-a_n\} {an+1an}是首项为 a 2 − a 1 a_2-a_1 a2a1,公比为 2 2 2的等比数列;

l g a n + 1 = 2 l g a n lga_{n+1}=2lga_n lgan+1=2lgan,则数列 { l g a n } \{lga_n\} {lgan}是首项为 l g a 1 lga_1 lga1,公比为 2 2 2的等比数列;

常见构造

  • ①基本型 a n + 1 = p a n + q ( p ≠ 0 , 1 ; q ≠ 0 ) a_{n+1}=pa_n+q(p\neq 0,1;q\neq 0) an+1=pan+q(p=01q=0) p p p q q q为常数;

思路:两边同时加上常数 k k k,构造等比数列 a n + 1 + k = p ( a n + k ) a_{n+1}+k=p(a_n+k) an+1+k=p(an+k)求解;其中 k = q p − 1 k=\cfrac{q}{p-1} k=p1q

  • a n + 1 = p a n + q n a_{n+1}=pa_n+q^n an+1=pan+qn型; p p p q q q为常数;

思路:两边同时除以 q n + 1 q^{n+1} qn+1,得到 a n + 1 q n + 1 = p q ⋅ a n q n + 1 q \cfrac{a_{n+1}}{q^{n+1}}=\cfrac{p}{q}\cdot \cfrac{a_{n}}{q^{n}}+\cfrac{1}{q} qn+1an+1=qpqnan+q1,即 b n + 1 = m b n + h b_{n+1}=mb_n+h bn+1=mbn+h,转化为上述类型①;

  • a n + 1 = p a n a n + q a_{n+1}=\cfrac{pa_n}{a_n+q} an+1=an+qpan型; p p p q q q为常数;

思路:两边同时取倒数,得到 1 a n + 1 = a n + q p a n = q p ⋅ 1 a n + 1 p \cfrac{1}{a_{n+1}}=\cfrac{a_n+q}{pa_n}=\cfrac{q}{p}\cdot \cfrac{1}{a_n}+\cfrac{1}{p} an+11=panan+q=pqan1+p1,即转化为类型①求解;

  • a n + 1 − a n = k a n + 1 a n a_{n+1}-a_n=ka_{n+1}a_n an+1an=kan+1an型; k k k为常数;

思路:两边同时除以 a n + 1 a n a_{n+1}a_n an+1an,构造等差数列 1 a n − 1 a n + 1 = k \cfrac{1}{a_n}-\cfrac{1}{a_{n+1}}=k an1an+11=k求解;

  • a n + 1 = p a n + q n + r ( p ≠ 0 , 1 ; q ≠ 0 ; r ≠ 0 ) a_{n+1}=pa_n+qn+r(p\neq 0,1;q\neq 0;r\neq 0) an+1=pan+qn+r(p=01q=0r=0)型; p p p q q q r r r为常数;【了解】

思路:构造等比数列,令 a n + 1 + x ( n + 1 ) + y = p ( a n + x n + y ) a_{n+1}+x(n+1)+y=p(a_n+xn+y) an+1+x(n+1)+y=p(an+xn+y),利用两个多项式相等,对应系数相等求得 x x x y y y,利用等比数列求解;

引例, a n + 1 = 3 a n + 2 n − 1 a_{n+1}=3a_n+2n-1 an+1=3an+2n1①;假设其能变形得到 a n + 1 + p ( n + 1 ) + q = 3 ( a n + p n + q ) a_{n+1}+p(n+1)+q=3(a_{n}+pn+q) an+1+p(n+1)+q=3(an+pn+q)②,

打开整理得到, a n + 1 = 3 a n + 3 p n + 3 q − p n − p − q = 3 a n + 2 p n + ( 2 q − p ) a_{n+1}=3a_n+3pn+3q-pn-p-q=3a_n+2pn+(2q-p) an+1=3an+3pn+3qpnpq=3an+2pn+(2qp)③,

由①③两式恒等,得到对应系数相等,即 2 p = 2 2p=2 2p=2 2 q − p = − 1 2q-p=-1 2qp=1,解得 p = 1 p=1 p=1 q = 0 q=0 q=0

代入②式,得到 a n + 1 + ( n + 1 ) = 3 ( a n + n ) a_{n+1}+(n+1)=3(a_{n}+n) an+1+(n+1)=3(an+n)

提示:较难的情形,两边同时加上同结构的一次式构造等比数列;

  • a n + 1 = a n r ( r ∈ N ∗ ) a_{n+1}=a_n^r(r\in N^*) an+1=anr(rN)型;【了解】

思路:两边同时取对数,构造等比数列求解;

  • a n + 2 = p a n + 1 + q a n a_{n+2}=pa_{n+1}+qa_n an+2=pan+1+qan型;【了解】

思路:转化为 a n + 2 − s a n + 1 = p ( a n + 1 − s a n ) a_{n+2}-sa_{n+1}=p(a_{n+1}-sa_n) an+2san+1=p(an+1san),其中 { s + t = p s t = − q \left\{\begin{array}{l}{s+t=p}\\{st=-q}\end{array}\right. {s+t=pst=q

高阶总结

构造数列中的常见变形总结

变形训练

4 a n + 1 = 4 a n 2 + 4 a n − 1 4a_{n+1}=4a_n^2+4a_n-1 4an+1=4an2+4an1,证明: { l g ( a n + 1 2 ) } \{lg(a_n+\cfrac{1}{2})\} {lg(an+21)}为等比数列;

提示:见下面典例剖析;

S n = 2 a n − 2 n S_{n}=2a_n-2^n Sn=2an2n,证明: { a n + 1 − 2 a n } \{a_{n+1}-2a_n\} {an+12an}为等比数列;

提示:注意隐含条件的指向作用;

a n = S n ⋅ S n − 1 a_n=S_n\cdot S_{n-1} an=SnSn1,变形得到 S n − S n − 1 = S n ⋅ S n − 1 S_n-S_{n-1}=S_n\cdot S_{n-1} SnSn1=SnSn1

提示:代换,同除构造;

n a n + 1 = ( n + 1 ) a n + 2 na_{n+1}=(n+1)a_n+2 nan+1=(n+1)an+2,变形得到 a n + 1 n + 1 = a n n + 2 n ( n + 1 ) \cfrac{a_{n+1}}{n+1}=\cfrac{a_n}{n}+\cfrac{2}{n(n+1)} n+1an+1=nan+n(n+1)2

a n + 1 S n ⋅ S n + 1 = S n + 1 − S n S n ⋅ S n + 1 = 1 S n − 1 S n + 1 \cfrac{a_{n+1}}{S_n\cdot S_{n+1}}=\cfrac{S_{n+1}-S_{n}}{S_n\cdot S_{n+1}}=\cfrac{1}{S_n}-\cfrac{1}{S_{n+1}} SnSn+1an+1=SnSn+1Sn+1Sn=Sn1Sn+11

a n + 2 − 2 a n + 1 + a n = 2 a_{n+2}-2a_{n+1}+a_n=2 an+22an+1+an=2,变形得到 ( a n + 2 − a n + 1 ) − ( a n + 1 − a n ) = 2 (a_{n+2}-a_{n+1})-(a_{n+1}-a_n)=2 (an+2an+1)(an+1an)=2

提示:对于下标是连续三项的时候,考虑拆分,一定是两两组合拆分;

2 n ( 2 n − 1 ) ( 2 n + 1 − 1 ) = 1 2 n − 1 − 1 2 n + 1 − 1 \cfrac{2^n}{(2^n-1)(2^{n+1}-1)}=\cfrac{1}{2^n-1}-\cfrac{1}{2^{n+1}-1} (2n1)(2n+11)2n=2n112n+111

提示:高阶的裂项相消,

a n + 1 − a n = 3 a n + 1 a n a_{n+1}-a_{n}=3a_{n+1}a_n an+1an=3an+1an

提示:同除构造;

a n + 1 = 3 a n + 2 n − 1 a_{n+1}=3a_n+2n-1 an+1=3an+2n1;变形得到 a n + 1 + ( n + 1 ) = 3 ( a n + n ) a_{n+1}+(n+1)=3(a_{n}+n) an+1+(n+1)=3(an+n)

提示:较难的情形,两边同时加上同结构的一次式构造等比数列;

对应练习

在数列 { a n } \{a_n\} {an}中, a 1 = 1 a_1=1 a1=1,若 a n + 1 = 3 a n + 1 a_{n+1}=3a_n+1 an+1=3an+1,求 a n a_n an=_____________。

提示:两边同加常数,构造等比数列;

在数列 { a n } \{a_n\} {an}中, a 1 = 1 a_1=1 a1=1,若 a n + 1 = 1 1 + a n a_{n+1}=\cfrac{1}{1+a_n} an+1=1+an1,求 a n a_n an=_____________。

提示:两边同时取倒数,构造等差数列;

在数列 { a n } \{a_n\} {an}中, a 1 = 1 a_1=1 a1=1 a n > 0 a_n>0 an>0,若 ( n + 1 ) a n + 1 2 − n a n 2 + a n + 1 a n = 0 (n+1)a_{n+1}^2-na_n^2+a_{n+1}a_n=0 (n+1)an+12nan2+an+1an=0,求 a n a_n an=_____________。

提示:通过代数变形,构造等差数列;

n a n + 1 2 − n a n 2 + a n + 1 2 + a n + 1 a n = 0 na_{n+1}^2-na_n^2+a_{n+1}^2+a_{n+1}a_n=0 nan+12nan2+an+12+an+1an=0

n ( a n + 1 + a n ) ( a n + 1 − a n ) + a n + 1 ( a n + 1 + a n ) = 0 n(a_{n+1}+a_n)(a_{n+1}-a_n)+a_{n+1}(a_{n+1}+a_n)=0 n(an+1+an)(an+1an)+an+1(an+1+an)=0

( a n + 1 + a n ) [ n ( a n + 1 − a n ) + a n + 1 ] = 0 (a_{n+1}+a_n)[n(a_{n+1}-a_n)+a_{n+1}]=0 (an+1+an)[n(an+1an)+an+1]=0

( n + 1 ) a n + 1 − n a n = 0 (n+1)a_{n+1}-na_n=0 (n+1)an+1nan=0

在数列 { a n } \{a_n\} {an}中, a 1 = 1 a_1=1 a1=1,若 a n + 1 = 2 a n + 2 n a_{n+1}=2a_n+2^n an+1=2an+2n,求 a n a_n an=_____________。

提示:两边同时除以 2 n + 1 2^{n+1} 2n+1,构造等差数列;

在数列 { a n } \{a_n\} {an}中, a 1 = 1 a_1=1 a1=1,若 a n + 1 = 3 a n + 2 n a_{n+1}=3a_n+2^n an+1=3an+2n,求 a n a_n an=_____________。

提示:两种变形综合应用而已;

两边同时除以 2 n + 1 2^{n+1} 2n+1,转化为 a n + 1 2 n + 1 = 3 2 × a n 2 n + 1 2 \cfrac{a_{n+1}}{2^{n+1}}=\cfrac{3}{2}\times \cfrac{a_n}{2^n}+\cfrac{1}{2} 2n+1an+1=23×2nan+21

然后两边两边同加常数,构造等比数列;

在数列 { a n } \{a_n\} {an}中, a 1 = 1 a_1=1 a1=1 a 2 = 6 a_2=6 a2=6,若 a n + 2 − 2 a n + 1 + a n = 2 a_{n+2}-2a_{n+1}+a_n=2 an+22an+1+an=2,求 a n a_n an=_____________。

提示: ( a n + 2 − a n + 1 ) − ( a n + 1 − a n ) = 2 (a_{n+2}-a_{n+1})-(a_{n+1}-a_{n})=2 (an+2an+1)(an+1an)=2

特殊用途

  • 构造法除过能像上述方法求得通项公式以外,还可以推求数列的周期性

引例1:由 a n + a n − 1 = 4 ( n ≥ 2 ) a_n+a_{n-1}=4(n\ge 2) an+an1=4(n2)①,构造 a n + 1 + a n = 4 a_{n+1}+a_n=4 an+1+an=4②,两式做差,得到 a n + 1 − a n − 1 = 0 a_{n+1}-a_{n-1}=0 an+1an1=0,即数列的周期为 T = 2 T=2 T=2

引例2:由 a n + 1 ⋅ a n = k a_{n+1}\cdot a_n=k an+1an=k①,构造 a n + 2 ⋅ a n + 1 = k a_{n+2}\cdot a_{n+1}=k an+2an+1=k②,两式作商,得到 a n + 2 = a n a_{n+2}=a_n an+2=an,则数列 { a n } \{a_n\} {an}的周期为 T = 2 T=2 T=2,其实数列也是等积数列;

引例3:由 a n + 1 = a n − a n − 1 a_{n+1}=a_n-a_{n-1} an+1=anan1①,构造 a n + 2 = a n + 1 − a n a_{n+2}=a_{n+1}-a_{n} an+2=an+1an②,两式相加,得到 a n + 2 = − a n − 1 a_{n+2}=-a_{n-1} an+2=an1,即 a n + 3 = − a n a_{n+3}=-a_n an+3=an,故数列的周期为 T = 6 T=6 T=6

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值