前言
使用构造法求数列的通项公式,首先需要突破的是对 a n a_n an的内涵的理解和应用。
理解内涵
在数列的学习中,我们经常会见到这样的式子 a n + 1 - a n = m ( m 常数 ) , a_{n+1}-a_n = m(m常数), an+1-an=m(m常数), 此时你一定会反应出数列 { a n } \{a_n\} { an}是等差数列,那么你有没有想过, a n a_n an除过可以是整式,还可以是分式,指数式,对数式,单项式,还可以是多项式等等,比如见到 S n + 1 - S n = m ( m 常数 ) , S_{n+1}-S_n = m(m常数), Sn+1-Sn=m(m常数), 你还能看出来是等差数列吗,所以你还需要特别注意:对代数式 a n + 1 - a n = m a_{n+1}-a_n = m an+1-an=m或 a n + 1 a n = m \cfrac{a_{n+1}}{a_n} = m anan+1=m ( m m m常数)中 a n a_n an的“内涵”的理解。以下引例加深对等差数列中字母内涵的理解:
① 1 a n + 1 - 1 a n = m \cfrac{1}{a_{n+1}}-\cfrac{1}{a_n} = m an+11-an1=m,则数列 { 1 a n } \{\cfrac{1}{a_n}\} { an1}是首项为 1 a 1 \cfrac{1}{a_1} a11,公差为 m m m的等差数列;
② 1 S n + 1 - 1 S n = m \cfrac{1}{S_{n+1}}-\cfrac{1}{S_n} = m Sn+11-Sn1=m,则数列 { 1 S n } \{\cfrac{1}{S_n}\} { Sn1}是首项为 1 a 1 \cfrac{1}{a_1} a11,公差为 m m m的等差数列;
③ a n + 1 n + 1 - a n n = m \cfrac{a_{n+1}}{n+1}-\cfrac{a_n}{n} = m n+1an+1-nan=m,则数列 { a n n } \{\cfrac{a_n}{n}\} { nan}是首项为 a 1 1 \cfrac{a_1}{1} 1a1,公差为 m m m的等差数列;
④ n a n + 1 + ( n + 1 ) - n − 1 a n + n = m \cfrac{n}{a_{n+1}+(n+1)}-\cfrac{n-1}{a_n+n} = m an+1+(n+1)n-an+nn−1=m,则数列 { n − 1 a n + n } \{\cfrac{n-1}{a_n+n}\} { an+nn−1}是首项为 1 − 1 a 1 + 1 \cfrac{1-1}{a_1+1} a1+11−1,公差为 m m m的等差数列;
⑤ ( n + 1 ) a n + 1 − n a n = m (n+1)a_{n+1}-na_n=m (n+1)an+1−nan=m, 则数列 { n ⋅ a n } \{n\cdot a_n\} { n⋅an}是首项为 a 1 a_1 a1,公差为 m m m的等差数列;
⑥ a n + 1 2 - a n 2 = m a_{n+1}^2-a_n^2 = m an+12-an2=m,则数列 { a n 2 } \{a_n^2\} { an2}是首项为 a 1 2 a_1^2 a12,公差为 m m m的等差数列;
⑦ log m a n + 1 2 - l o g m a n 2 = p \log_m^{a_{n+1}^2}-log_m^ {a_n^2} = p logman+12-logman2=p,则数列 { l o g m a n 2 } \{log_m^{a_n^2}\} { logman2}是首项为 l o g m a 1 2 log_m^{a_1^2} logma12,公差为 p p p的等差数列;
⑧ a n + 2 − 2 a n + 1 = a n + 1 − 2 a n a_{n+2}-2a_{n+1}=a_{n+1}-2a_n an+2−2an+1=an+1−2an,则数列 { a n + 1 − 2 a n } \{a_{n+1}-2a_n\} { an+1−2an}是首项为 a 2 − 2 a 1 a_2-2a_1