复合函数 | 难点

前言

复合函数是高中数学中的一大难点,那么什么是复合函数呢?就像我们学习集合的交集运算时,有 A ∩ ( B ∩ C ) A\cap(B\cap C) A(BC)一样(求完交集再求交集),由 x → g ( x ) x\rightarrow g(x) xg(x)(对应),再由 g ( x ) → f [ g ( x ) ] g(x)\rightarrow f[g(x)] g(x)f[g(x)](对应完后再对应),这样我们得到的函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]就是复合函数。

复习准备

  • 基本初等函数,可以类比原子是构成物质的最基本的不可再分的微粒一样,来理解基本初等函数和其他函数的关系。高中阶段所学习的函数中,只有前五种基本初等函数,需要学生切实掌握。第六种现在不需要学生学习。

①常函数 f ( x ) = c ( c f(x)=c(c f(x)=c(c为常数) ;

②幂函数 f ( x ) = x α f(x)=x^{\alpha} f(x)=xα

③指数函数 f ( x ) = a x ( a > 0 f(x)=a^x(a>0 f(x)=ax(a>0 a ≠ 1 ) a\neq 1) a=1)

④对数函数 f ( x ) = l o g a x ( a > 0 f(x)=log_ax(a>0 f(x)=logax(a>0 a ≠ 1 ) a\neq 1) a=1)

⑤三角函数 f ( x ) = s i n x f(x)=sinx f(x)=sinx f ( x ) = c o s x f(x)=cosx f(x)=cosx

⑥反三角函数 f ( x ) = a r c s i n x , x ∈ [ − π 2 , π 2 ] f(x)=arcsinx,x\in[-\cfrac{\pi}{2},\cfrac{\pi}{2}] f(x)=arcsinxx[2π2π]等 ,

  • 初等函数:由基本初等函数经过四则运算所构成的函数。如一次函数,二次函数等。比如,一次函数 f ( x ) = k x + b ( k ≠ 0 ) f(x)=kx+b(k\neq 0) f(x)=kx+b(k=0),其实是常函数 y = k y=k y=k与幂函数 y = x y=x y=x相乘,再与常函数 y = b y=b y=b求和得到的;比如,指数型函数 y = 3 ⋅ 2 x + 1 y=3\cdot 2^x+1 y=32x+1,其实是常函数 y = 3 y=3 y=3与指数函数 y = 2 x y=2^x y=2x相乘,再与常函数 y = 1 y=1 y=1求和得到的。

复合函数

高中阶段涉及到的复合函数,一般就由以上的基本初等函数或初等函数复合而成。为控制难度,一般大多只复合一次。

定义:设函数 y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x),则函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)]称为由 y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x)复合而成的复合函数,其中函数 y = f ( u ) y=f(u) y=f(u)常常称为外函数,函数 u = g ( x ) u=g(x) u=g(x)常常称为内函数,其中内函数的值域必须是外函数的定义域的子集。

如何拆分

有时候,我们却需要将复合函数拆分开,以便于解决相应的问题。此时我们应该注意,要尽可能将函数拆分为为基本初等函数或初等函数。比如,给定函数如 y = ( 1 2 ) 2 x 2 + 3 x − 1 y=(\cfrac{1}{2})^{2x^2+3x-1} y=(21)2x2+3x1,我们就拆分为 y = ( 1 2 ) u y=(\cfrac{1}{2})^u y=(21)u u = 2 x 2 + 3 x − 1 u=2x^2+3x-1 u=2x2+3x1两个函数。

典例剖析

  • 涉及复合函数+抽象函数的定义域,需要注意以下几点:

①比如 f ( x ) f(x) f(x) f ( x + 2 ) f(x+2) f(x+2) f ( 2 x − 3 ) f(2^x-3) f(2x3) 中,由于自变量 x x x x + 2 x+2 x+2 2 x − 3 2^x-3 2x3 (此处需要将 x + 2 x+2 x+2 2 x − 3 2^x-3 2x3分别看成一个整体对待,比如 t = x + 2 t=x+2 t=x+2 t = 2 x − 3 t=2^x-3 t=2x3)接受同样的对应关系的作用,故所受的限制应该是一样的,即三个自变量(或自变量的整体)的取值范围应该是一样的;举个实际例子,三个自变量 x x x x + 2 x+2 x+2 2 x − 3 2^x-3 2x3就类似一个班级里的某个单个人,某个小组,某个组织等,它们都应该接受这个班级的纪律约束(就类似对应关系 f f f )一样.

②已知定义域或求解定义域都是针对单独的自变量 x x x 而言。

已知函数 f ( x ) f(x) f(x)的定义域是 [ − 1 , 1 ] [-1,1] [11],求函数 f ( 2 x + 1 ) f(2x+1) f(2x+1)的定义域;

分析:解决这类题目需要牢牢抓住两点:其一接受对应法则 f f f作用的 x x x 2 x + 1 2x+1 2x+1是处于对等位置的,其二不论是给定函数的定义域还是求解函数的定义域,都是针对单独的自变量 x x x而言,

据此可知由于 − 1 ≤ x ≤ 1 -1\leq x\leq 1 1x1

− 1 ≤ 2 x + 1 ≤ 1 -1\leq 2x+1\leq 1 12x+11,解得 x ∈ [ − 1 , 0 ] x\in [-1,0] x[10]

故复合函数 f ( 2 x + 1 ) f(2x+1) f(2x+1)的定义域是 x ∈ [ − 1 , 0 ] x\in [-1,0] x[10]

已知函数 f ( x + 1 ) f(x+1) f(x+1)的定义域是 [ 0 , 1 ] [0,1] [01],求函数 f ( 2 x − 2 ) f(2^x-2) f(2x2)的定义域。

分析:这里同样你得清楚 x + 1 x+1 x+1 2 x − 2 2^x-2 2x2是对等的,

先由 x ∈ [ 0 , 1 ] x\in[0,1] x[01],计算得到 1 ≤ x + 1 ≤ 2 1\leq x+1\leq 2 1x+12,故 1 ≤ 2 x − 2 ≤ 2 1\leq 2^x-2\leq 2 12x22

解得 3 ≤ 2 x ≤ 4 3\leq 2^x\leq 4 32x4,同时取以2为底的对数得到 l o g 2 3 ≤ x ≤ 2 log_2^3\leq x\leq 2 log23x2

则所求定义域是 x ∈ [ l o g 2 3 , 2 ] x\in [log_2^3,2] x[log232]

已知函数 f ( 2 x + 1 ) f(2x+1) f(2x+1)的定义域是 [ − 1 , 1 ] [-1,1] [11],求函数 f ( x ) f(x) f(x)的定义域;

分析:由上面的例子分析可知,所给函数的定义域是 [ − 1 , 1 ] [-1,1] [11]

即函数 f ( 2 x + 1 ) f(2x+1) f(2x+1)的自变量 x x x的取值范围是 [ − 1 , 1 ] [-1,1] [11]

故内函数 2 x + 1 2x+1 2x+1的取值范围这样求解,

− 1 ≤ x ≤ 1 -1\leq x \leq 1 1x1,得到 − 2 ≤ 2 x ≤ 2 -2\leq 2x \leq 2 22x2

所以 − 1 = − 2 + 1 ≤ 2 x + 1 ≤ 2 + 1 = 3 -1=-2+1\leq 2x+1 \leq 2+1=3 1=2+12x+12+1=3

又由于 2 x + 1 2x+1 2x+1 x x x对等(你可以理解为这两个接受同样的纪律约束也行),

所以 f ( x ) f(x) f(x) x x x的取值范围应该是 − 1 ≤ x ≤ 3 -1\leq x\leq 3 1x3

故函数 f ( x ) f(x) f(x)的定义域是 [ − 1 , 3 ] [-1,3] [13]

  • 复合函数的值域

【2019河南普通高中高考适应性考试】已知函数 f ( x ) = l o g 0.5 ( s i n x + c o s 2 x − 1 ) f(x)=log_{0.5}(sinx+cos^2x-1) f(x)=log0.5(sinx+cos2x1) x ∈ ( 0 , π 2 ) x\in (0,\cfrac{\pi}{2}) x(0,2π),则 f ( x ) f(x) f(x)的取值范围是_____________。

分析:设 g ( x ) = s i n x + c o s 2 x − 1 g(x)=sinx+cos^2x-1 g(x)=sinx+cos2x1 x ∈ ( 0 , π 2 ) x\in (0,\cfrac{\pi}{2}) x(0,2π),则 g ( x ) = s i n x − s i n 2 x = − ( s i n x − 1 2 ) 2 + 1 4 g(x)=sinx-sin^2x=-(sinx-\cfrac{1}{2})^2+\cfrac{1}{4} g(x)=sinxsin2x=(sinx21)2+41

0 < s i n x < 1 0<sinx<1 0<sinx<1,故当 s i n x = 1 2 sinx=\cfrac{1}{2} sinx=21时, g ( x ) m a x = 1 4 g(x)_{max}=\cfrac{1}{4} g(x)max=41,即 0 < g ( x ) ⩽ 1 4 0<g(x)\leqslant \cfrac{1}{4} 0<g(x)41

f ( x ) = l o g 0.5 g ( x ) ⩾ l o g 0.5 1 4 = 2 f(x)=log_{0.5}g(x)\geqslant log_{0.5}\cfrac{1}{4}=2 f(x)=log0.5g(x)log0.541=2,故 f ( x ) ∈ [ 2 , + ∞ ) f(x)\in [2,+\infty) f(x)[2+)

已知函数 f ( x ) = ln ⁡ x + ln ⁡ ( a − x ) f(x)=\ln x+\ln (a-x) f(x)=lnx+ln(ax) 的图象关于直线 x = 1 x=1 x=1 对称, 则函数 f ( x ) f(x) f(x) 的值域为 【 \qquad

$A.(0,2)$ $B.[0,+\infty)$ $C.(-\infty,2]$ $D.(-\infty, 0]$

解: 根据题意, 对于函数 f ( x ) = ln ⁡ x + ln ⁡ ( a − x ) f(x)=\ln x+\ln (a-x) f(x)=lnx+ln(ax)

f ( a − x ) = ln ⁡ ( a − x ) + ln ⁡ [ a − ( a − x ) ] = ln ⁡ x + ln ⁡ ( a − x ) = f ( x ) f(a-x)=\ln (a-x)+\ln [a-(a-x)]=\ln x+\ln (a-x)=f(x) f(ax)=ln(ax)+ln[a(ax)]=lnx+ln(ax)=f(x),即 f ( a − x ) = f ( x ) f(a-x)=f(x) f(ax)=f(x)

则函数 f ( x ) f(x) f(x) 的图象关于直线 x = a 2 x=\frac{a}{2} x=2a 对称,

若函数 f ( x ) = ln ⁡ x + ln ⁡ ( a − x ) f(x)=\ln x+\ln (a-x) f(x)=lnx+ln(ax) 的图象关于直线 x = 1 x=1 x=1 对称,则有 a 2 = 1 \cfrac{a}{2}=1 2a=1, 则 a = 2 a=2 a=2

f ( x ) = ln ⁡ x + ln ⁡ ( 2 − x ) = ln ⁡ ( 2 x − x 2 ) f(x)=\ln x+\ln (2-x)=\ln \left(2 x-x^{2}\right) f(x)=lnx+ln(2x)=ln(2xx2),其定义域为 ( 0 , 2 ) (0,2) (0,2)

t = 2 x − x 2 t=2 x-x^{2} t=2xx2, 则 y = ln ⁡ t y=\ln t y=lnt

又由 t = − ( x − 1 ) 2 + 1 t=-(x-1)^{2}+1 t=(x1)2+1 0 < x < 2 0<x<2 0<x<2, 则有 0 < t ⩽ 1 0<t\leqslant 1 0<t1, 则 y = ln ⁡ t ⩽ 0 y=\ln t\leqslant 0 y=lnt0

即函数 f ( x ) f(x) f(x) 的值域为 ( − ∞ , 0 ] (-\infty, 0] (,0], 故选: D D D .

  • 复合函数的单调性

已知函数 f ( x ) = l o g 2 ( x 2 − 3 x + 2 ) f(x)=log_2(x^2-3x+2) f(x)=log2(x23x+2),求其单调性。

分析:令 u = x 2 − 3 x + 2 u=x^2-3x+2 u=x23x+2,则原复合函数拆分为外函数 y = f ( u ) = l o g 2 u y=f(u)=log_2u y=f(u)=log2u和内函数 u = x 2 − 3 x + 2 u=x^2-3x+2 u=x23x+2

u = x 2 − 3 x + 2 > 0 u=x^2-3x+2>0 u=x23x+2>0,解得 x ∈ ( − ∞ , 1 ) ∪ ( 2 , + ∞ ) x\in (-\infty,1)\cup(2,+\infty) x(1)(2+)

即此复合函数的定义域为 x ∈ ( − ∞ , 1 ) ∪ ( 2 , + ∞ ) x\in (-\infty,1)\cup(2,+\infty) x(1)(2+)

那么要研究其单调性,必须先在上述定义域范围内,定义域优先原则。

然后由 u = x 2 − 3 x + 2 = ( x − 3 2 ) 2 − 1 4 u=x^2-3x+2=(x-\cfrac{3}{2})^2-\cfrac{1}{4} u=x23x+2=(x23)241

则内函数 u ( x ) u(x) u(x)在区间 ( − ∞ , 1 ) (-\infty,1) (1)上单调递减,在区间 ( 2 , + ∞ ) (2,+\infty) (2+)上单调递增,

而外函数 y = f ( u ) = l o g 2 u y=f(u)=log_2u y=f(u)=log2u只是单调递增的,

故复合函数 f ( x ) f(x) f(x)在区间 ( − ∞ , 1 ) (-\infty,1) (1)上单调递减,在区间 ( 2 , + ∞ ) (2,+\infty) (2+)上单调递增。

【求复合函数的单调区间】【2018天津模拟】已知函数 y = f ( x ) ( x ∈ R ) y=f(x)(x\in R) y=f(x)(xR)的图像如图所示,则函数 g ( x ) = f ( l o g a x ) ( 0 < a < 1 ) g(x)=f(log_ax)(0<a<1) g(x)=f(logax)(0<a<1)的单调递减区间为【 \quad

$A.[0,\cfrac{1}{2}]$ $B.[\sqrt{a},1]$ $C.(-\infty,0)\cup[\cfrac{1}{2},+\infty)$ $D.[\sqrt{a},\sqrt{a+1}]$

分析:由图可知,外函数 f ( x ) f(x) f(x)在区间 ( − ∞ , 0 ) (-\infty,0) (0) [ 1 2 , + ∞ ) [\cfrac{1}{2},+\infty) [21+)上单调递减,在区间 [ 0 , 1 2 ] [0,\cfrac{1}{2}] [021]上单调递增,

0 < a < 1 0<a<1 0<a<1时,内函数 y = l o g a x y=log_ax y=logax在区间 ( 0 , + ∞ ) (0,+\infty) (0+)上单调递减,

故要使得复合函数函数 g ( x ) = f ( l o g a x ) ( 0 < a < 1 ) g(x)=f(log_ax)(0<a<1) g(x)=f(logax)(0<a<1)单调递减,

则需要 l o g a x ∈ [ 0 , 1 2 ] log_ax\in [0,\cfrac{1}{2}] logax[021],即 0 ≤ l o g a x ≤ 1 2 0\leq log_ax\leq \cfrac{1}{2} 0logax21

解得 x ∈ [ a , 1 ] x\in [\sqrt{a},1] x[a 1],故选 B B B

  • 已知复合函数的单调性求参数的取值范围

【2019届高三理科数学三轮模拟试题】若函数 f ( x ) = l o g 0.4 ( 5 + 4 x − x 2 ) f(x)=log_{0.4}(5+4x-x^2) f(x)=log0.4(5+4xx2)在区间 ( a − 1 , a + 1 ) (a-1,a+1) (a1a+1)上单调递减,则实数 a a a的取值范围是【】

$A.[0,1]$ $B.(0,1)$ $C.[3,4]$ $D.(3,4)$

分析:内函数 g ( x ) = − ( x − 2 ) 2 + 9 g(x)=-(x-2)^2+9 g(x)=(x2)2+9,若要在区间 ( a − 1 , a + 1 ) (a-1,a+1) (a1a+1)上单调递减,

则内函数需要满足条件 a + 1 ≤ 2 a+1\leq 2 a+12①;

又由于内函数必须恒为正,故需要满足 − ( a − 1 − 2 ) 2 + 9 ≥ 0 -(a-1-2)^2+9\ge 0 (a12)2+90②,

联立①②可得, 0 ≤ a ≤ 1 0\leq a\leq 1 0a1;故选 A A A

【2017·合肥模拟】若函数 f ( x ) = l o g 3 a [ ( a 2 − 3 a ) x ] f(x)=log_{3a}[(a^2-3a)x] f(x)=log3a[(a23a)x] ( − ∞ , 0 ) (-\infty,0) (0)上是减少的,则实数 a a a的取值范围是多少?

分析:令 g ( x ) = ( a 2 − 3 a ) x g(x)=(a^2-3a)x g(x)=(a23a)x,由于 g ( x ) > 0 g(x)>0 g(x)>0在区间 ( − ∞ , 0 ) (-\infty,0) (0)上要恒成立,

则有 a 2 − 3 a < 0 a^2-3a<0 a23a<0,这样内函数 g ( x ) g(x) g(x)只能单调递减,复合函数 f ( x ) = l o g 3 a g ( x ) f(x)=log_{3a}g(x) f(x)=log3ag(x)是单调递减的,

所以外函数必须是单调递增的,故 3 a > 1 3a>1 3a>1,由 { a 2 − 3 a < 0 3 a > 1 \begin{cases}a^2-3a<0\\3a>1\end{cases} {a23a<03a>1

解得 1 3 < a < 3 \cfrac{1}{3}<a<3 31<a<3,故 a ∈ ( 1 3 , 3 ) a\in(\cfrac{1}{3},3) a(313)

【2021届高三文科数学二轮资料用题】若定义在 [ 1 , 2 ] [1,2] [1,2] 上的函数 f ( x ) = log ⁡ a ( 6 − a x ) f(x)=\log _{a}(6-ax) f(x)=loga(6ax) 为减函数,且 2 f ( x ) ⩽ 3 log ⁡ 3 4 2 f(x) \leqslant 3^{\log _{3} 4} 2f(x)3log34 恒成立,则实数 a a a 的取值范围是________________.

解析:由于外函数的特性, a > 0 a>0 a>0 a ≠ 1 a\neq 1 a=1,且复合函数 f ( x ) = log ⁡ a ( 6 − a x ) f(x)=\log _{a}(6-ax) f(x)=loga(6ax) 为减函数,

故由复合函数的性质得 a > 1 a>1 a>1, 则由定义域可知 当 x ∈ [ 1 , 2 ] x \in[1,2] x[1,2] 时,由 6 − a x > 0 6-a x>0 6ax>0 恒成立,

得到, 6 − 2 a > 0 6-2a>0 62a>0, 解得 a < 3 a<3 a<3

又由于 2 f ( x ) ⩽ 3 log ⁡ 3 4 2f(x)\leqslant 3^{\log _{3} 4} 2f(x)3log34 恒成立, 即 f ( x ) ⩽ 2 f(x)\leqslant 2 f(x)2 恒成立.

f ( x ) m a x ⩽ 2 f(x)_{max}\leqslant 2 f(x)max2,又 f ( x ) m a x = f ( 1 ) f(x)_{max}=f(1) f(x)max=f(1),即得到 log ⁡ a ( 6 − a ) ⩽ 2 \log _{a}(6-a)\leqslant 2 loga(6a)2

log ⁡ a ( 6 − a ) ⩽ log ⁡ a a 2 \log _{a}(6-a)\leqslant \log_{a}a^2 loga(6a)logaa2,由于 a > 1 a>1 a>1

得到 6 − a ⩽ a 2 6-a\leqslant a^2 6aa2,解得 a ⩽ − 3 a\leqslant -3 a3 a ⩾ 2 a\geqslant 2 a2

综上所述,实数 a a a 的取值范围为 [ 2 , 3 ) [2,3) [23).

【2018湖南张家界三模用题】若函数 f ( x ) = l o g m 4 x 2 + m x ( m > 0 , m ≠ 1 ) f(x)=log_m\cfrac{4x^2+m}{x}(m>0,m\neq 1) f(x)=logmx4x2+m(m>0m=1) [ 2 , 3 ] [2,3] [2,3]上单调递增,则 m m m的取值范围是【】

$A.(1,36]$ $B.[36,+\infty)$ $C.(1,16]\cup[36,+\infty)$ $D.(1,16]$

分析:令内函数为 g ( x ) = 4 x 2 + m x = 4 x + m x g(x)=\cfrac{4x^2+m}{x}=4x+\cfrac{m}{x} g(x)=x4x2+m=4x+xm,借助对勾函数可知,

函数 g ( x ) g(x) g(x) ( 0 , m 2 ] (0,\cfrac{\sqrt{m}}{2}] (02m ]上单调递减,在 [ m 2 , + ∞ ) [\cfrac{\sqrt{m}}{2},+\infty) [2m +)上单调递增;

由于复合函数 f ( x ) f(x) f(x) [ 2 , 3 ] [2,3] [2,3]上单调递增,则可能有两种情形:

其一为外函数单调递减且内函数单调递减,其二为外函数单调递增且内函数单调递增,

则只需要满足 { 0 < m < 1 3 ⩽ m 2 \left\{\begin{array}{l}{0<m<1}\\{3\leqslant \cfrac{\sqrt{m}}{2}}\end{array}\right. 0<m<132m { m > 1 m 2 ⩾ 2 \left\{\begin{array}{l}{m>1}\\{\cfrac{\sqrt{m}}{2}\geqslant 2}\end{array}\right. m>12m 2

解得 m ∈ ∅ m\in \varnothing m 1 < m ⩽ 16 1<m\leqslant 16 1<m16,即 m ∈ ( 1 , 16 ] m\in (1,16] m(116],故选 D D D.

【2017凤翔中学高三理科第二次月考第9题】若函数KaTeX parse error: Got function '\mskip' with no arguments as superscript at position 24: …ath{\kern#1#3}{\̲m̲s̲k̲i̲p̲#1#2}\relax [ 0 , 2 ] [0,2] [02]上为减函数,则实数 a a a的取值范围是【】

$A.[3,+\infty)$ $B.(0,1)$ $C.(1,3]$ $D.(1,3)$

分析:令 g ( x ) = 6 − a x g(x)=6-ax g(x)=6ax,像这类题目既要考虑单调性,还要考虑定义域,

易错之处就是只考虑单调性而不顾及定义域。

由题目可知必有 a > 0 a>0 a>0,故函数 g ( x ) g(x) g(x)单调递减,

考虑定义域时只要最小值 g ( 2 ) > 0 g(2)>0 g(2)>0即可,再考虑外函数必须是增函数,故 a > 1 a>1 a>1

结合 g ( 2 ) > 0 g(2)>0 g(2)>0,解得 1 < a < 3 1<a<3 1<a<3,故选 D D D

  • 复合函数的求导

①设 f ( x ) = s i n ( 2 x + 1 ) f(x)=sin(2x+1) f(x)=sin(2x+1),求导函数 f ′ ( x ) f'(x) f(x)

分析:我们目前一般只涉及一次复合的函数如 y = f ( u ) y=f(u) y=f(u) u = g ( x ) u=g(x) u=g(x)

则复合函数为 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] [ f ( g ( x ) ) ] ′ = f ′ [ g ( x ) ] ⋅ g ′ ( x ) [f(g(x))]'=f'[g(x)]\cdot g'(x) [f(g(x))]=f[g(x)]g(x)

ϕ = 2 x + 1 \phi=2x+1 ϕ=2x+1,则 y = f ( x ) = s i n ϕ y=f(x)=sin\phi y=f(x)=sinϕ,故 f ′ ( x ) = y x ′ = y ϕ ′ ⋅ ϕ x ′ = c o s ϕ ⋅ 2 = 2 c o s ( 2 x + 1 ) f'(x)=y'_x=y'_{\phi}\cdot \phi'_x=cos\phi\cdot 2=2cos(2x+1) f(x)=yx=yϕϕx=cosϕ2=2cos(2x+1)

②设 g ( x ) = l n ( x 2 + 3 x ) g(x)=ln(x^2+3x) g(x)=ln(x2+3x),求导函数 g ′ ( x ) g'(x) g(x)

分析: g ′ ( x ) = 1 x 2 + 3 x ⋅ ( x 2 + 3 x ) ′ = 2 x + 3 x 2 + 3 x g'(x)=\cfrac{1}{x^2+3x}\cdot (x^2+3x)'=\cfrac{2x+3}{x^2+3x} g(x)=x2+3x1(x2+3x)=x2+3x2x+3

说明:函数 f ( x ) = x 2 ± l n x f(x)=x^2\pm lnx f(x)=x2±lnx,不是复合函数,只是两个函数 y = x 2 y=x^2 y=x2与函数 y = l n x y=lnx y=lnx之间用四则运算构成的一个新函数。

③[抽象复合函数的求导]设 g ( x ) = x ⋅ f ( 2 x ) g(x)=x\cdot f(2x) g(x)=xf(2x),求 g ′ ( x ) g'(x) g(x)

分析: g ′ ( x ) = [ x ⋅ f ( 2 x ) ] ′ = x ′ ⋅ f ( 2 x ) + x ⋅ f ′ ( 2 x ) ⋅ ( 2 x ) ′ = f ( 2 x ) + 2 x ⋅ f ′ ( 2 x ) g'(x)=[x\cdot f(2x)]'=x'\cdot f(2x)+x\cdot f'(2x)\cdot (2x)'=f(2x)+2x\cdot f'(2x) g(x)=[xf(2x)]=xf(2x)+xf(2x)(2x)=f(2x)+2xf(2x)

  • 注意:复合函数求导时的运算,如对 y = l n ( 1 + x 1 − x ) y=ln(\cfrac{1+x}{1-x}) y=ln(1x1+x)直接求导,不如变形为 y = l n ( 1 + x ) − l n ( 1 − x ) y=ln(1+x)-ln(1-x) y=ln(1+x)ln(1x)后求导;

f ( x ) = e − x f(x)=e^{-x} f(x)=ex,则 f ′ ( x ) = − e − x f'(x)=-e^{-x} f(x)=ex;若 f ( x ) = e 2 x f(x)=e^{2x} f(x)=e2x,则 f ′ ( x ) = 2 e 2 x f'(x)=2e^{2x} f(x)=2e2x

f ( x ) = c o s ( 2 x + π 3 ) f(x)=cos(2x+\cfrac{\pi}{3}) f(x)=cos(2x+3π),则 f ′ ( x ) = − 2 s i n ( 2 x + π 3 ) f'(x)=-2sin(2x+\cfrac{\pi}{3}) f(x)=2sin(2x+3π)

若已知 f ( 2 x + 3 ) f(2x+3) f(2x+3),则 [ f ( 2 x + 3 ) ] ′ = 2 f ′ ( 2 x + 3 ) [f(2x+3)]'=2f'(2x+3) [f(2x+3)]=2f(2x+3)

  • 已知复合函数的定义域或值域为 R R R,求参数的取值范围;

已知函数 f ( x ) = l n ( x 2 + 2 a x − a ) f(x)=ln(x^2+2ax-a) f(x)=ln(x2+2axa)

①如果函数的定义域是 R R R,求参数 a a a的取值范围;

预备:先想一想,这个函数的定义域应该怎么求解?

分析:由于函数的定义域是 R R R,说明对任意的 x ∈ R x\in R xR,都能使得 g ( x ) = x 2 + 2 a x − a > 0 g(x)=x^2+2ax-a>0 g(x)=x2+2axa>0

转化为二次函数恒成立问题了,(此时至少可以考虑数形结合或者恒成立分离参数)

这里用数形结合,函数 g ( x ) g(x) g(x)开口向上,和 x x x轴没有交点,则 Δ < 0 \Delta <0 Δ<0

Δ = ( 2 a ) 2 − 4 × 1 × ( − a ) < 0 \Delta=(2a)^2-4\times 1\times(-a)<0 Δ=(2a)24×1×(a)<0,解得 a ∈ ( − 1 , 0 ) a\in (-1,0) a(10)

②如果函数的值域是 R R R,求参数 a a a的取值范围;

分析:如右图所示,要使得函数 f ( x ) f(x) f(x)的值域是 R R R,说明内函数 g ( x ) = x 2 + 2 a x − a g(x)=x^2+2ax-a g(x)=x2+2axa必须要能取遍所有的正数,结合下图,

如果有一部分正实数不能取到,那么函数 f ( x ) f(x) f(x)的值域就不会是 R R R,这样只能是函数 g ( x ) g(x) g(x) Δ ≥ 0 \Delta \ge 0 Δ0

而不能是 Δ < 0 \Delta <0 Δ<0,注意现在题目要求是值域为 R R R,而不是定义域为 R R R

因此必须满足条件 Δ = ( 2 a ) 2 − 4 × 1 × ( − a ) ≥ 0 \Delta=(2a)^2-4\times 1\times(-a)\ge 0 Δ=(2a)24×1×(a)0,解得 a ∈ { a ∣ a ≤ − 1 , a ≥ 0 } a\in \{a\mid a\leq -1 ,a\ge 0\} a{aa1a0}

下图是参数 a ∈ [ − 3 , 3 ] a\in [-3,3] a[33]时的两个函数图像的动态变化情况;

下图是参数 a ∈ ( − 1 , 0 ) a\in (-1,0) a(10)时的两个函数图像的动态变化情况;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值