倒序相加求和法

前言

等差数列的前 n n n项和公式的推导方法,就是倒序相加求和法。

适用范围

①等差数列;

②更多的体现为对函数性质的考查,尤其是关于中心对称的函数,自然有对称性的数列的求和也可以;

典例剖析

【函数性质的应用】定义在 R R R上的函数满足 f ( 1 2 + x ) + f ( 1 2 − x ) = 2 f(\cfrac{1}{2}+x)+f(\cfrac{1}{2}-x)=2 f(21+x)+f(21x)=2

求值: S = f ( 1 8 ) + f ( 2 8 ) + f ( 3 8 ) + ⋯ + f ( 7 8 ) S=f(\cfrac{1}{8})+f(\cfrac{2}{8})+f(\cfrac{3}{8})+\cdots+f(\cfrac{7}{8}) S=f(81)+f(82)+f(83)++f(87)

S = f ( 1 8 ) + f ( 2 8 ) + f ( 3 8 ) + ⋯ + f ( 7 8 ) ① S=f(\cfrac{1}{8})+f(\cfrac{2}{8})+f(\cfrac{3}{8})+\cdots+f(\cfrac{7}{8})① S=f(81)+f(82)+f(83)++f(87)

S = f ( 7 8 ) + f ( 6 8 ) + f ( 5 8 ) + ⋯ + f ( 1 8 ) ② S=f(\cfrac{7}{8})+f(\cfrac{6}{8})+f(\cfrac{5}{8})+\cdots+f(\cfrac{1}{8})② S=f(87)+f(86)+f(85)++f(81)

相加,求和得到 S = 7 S=7 S=7.

【函数性质的应用】求值: S = s i n 2 1 ∘ + s i n 2 2 ∘ + s i n 2 3 ∘ + ⋯ + s i n 2 8 8 ∘ + s i n 2 8 9 ∘ S=sin^21^{\circ}+sin^22^{\circ}+sin^23^{\circ}+\cdots+sin^288^{\circ}+sin^289^{\circ} S=sin21+sin22+sin23++sin288+sin289

法1: s i n 2 1 ∘ + s i n 2 8 9 ∘ = 1 sin^21^{\circ}+sin^289^{\circ}=1 sin21+sin289=1 s i n 2 2 ∘ + s i n 2 8 8 ∘ = 1 sin^22^{\circ}+sin^288^{\circ}=1 sin22+sin288=1 ⋯ \cdots s i n 2 4 4 ∘ + s i n 2 4 6 ∘ = 1 sin^244^{\circ}+sin^246^{\circ}=1 sin244+sin246=1 s i n 2 4 5 ∘ = 1 2 sin^245^{\circ}=\cfrac{1}{2} sin245=21

故原式 S = 44 + 1 2 = 44.5 S=44+\cfrac{1}{2}=44.5 S=44+21=44.5

法2: S = s i n 2 1 ∘ + s i n 2 2 ∘ + s i n 2 3 ∘ + ⋯ + s i n 2 8 8 ∘ + s i n 2 8 9 ∘ S=sin^21^{\circ}+sin^22^{\circ}+sin^23^{\circ}+\cdots+sin^288^{\circ}+sin^289^{\circ} S=sin21+sin22+sin23++sin288+sin289①,

则有 S = s i n 2 8 9 ∘ + s i n 2 8 8 ∘ + s i n 2 8 7 ∘ + ⋯ + s i n 2 2 ∘ + s i n 2 1 ∘ S=sin^289^{\circ}+sin^288^{\circ}+sin^287^{\circ}+\cdots+sin^22^{\circ}+sin^21^{\circ} S=sin289+sin288+sin287++sin22+sin21

即有 S = c o s 2 1 ∘ + c o s 2 2 ∘ + c o s 2 3 ∘ + ⋯ + c o s 2 8 8 ∘ + c o s 2 8 9 ∘ S=cos^21^{\circ}+cos^22^{\circ}+cos^23^{\circ}+\cdots+cos^288^{\circ}+cos^289^{\circ} S=cos21+cos22+cos23++cos288+cos289②,

①+②得到 2 S = 1 + 1 + 1 + ⋯ + 1 = 89 2S=1+1+1+\cdots+1=89 2S=1+1+1++1=89

S = 44.5 S=44.5 S=44.5

已知函数 f ( x ) = x + s i n π x − 3 f(x)=x+sin\pi x-3 f(x)=x+sinπx3,则 f ( 1 2017 ) + f ( 2 2017 ) + ⋯ f(\cfrac{1}{2017})+f(\cfrac{2}{2017})+\cdots f(20171)+f(20172)+ + f ( 4032 2017 ) + f ( 4033 2017 ) +f(\cfrac{4032}{2017})+f(\cfrac{4033}{2017}) +f(20174032)+f(20174033)的值为______.

【观察】:注意到 1 2017 + 4033 2017 = 4034 2017 = 2 \cfrac{1}{2017}+\cfrac{4033}{2017}=\cfrac{4034}{2017}=2 20171+20174033=20174034=2 2 2017 + 4032 2017 = 4034 2017 = 2 \cfrac{2}{2017}+\cfrac{4032}{2017}=\cfrac{4034}{2017}=2 20172+20174032=20174034=2 ⋯ \cdots

【归纳】:以上诸多表达式,我们一般不会一一验证,如果我们用 x x x 2 − x 2-x 2x来代表上述不同表达式中的自变量,则到两端等距离的两项的函数值的和就可以归纳为 f ( x ) + f ( 2 − x ) f(x)+f(2-x) f(x)+f(2x)

【猜想】:是否对任意 x x x,都满足 f ( x ) + f ( 2 − x ) = m f(x)+f(2-x)=m f(x)+f(2x)=m( m m m为常数)?

【验证】: f ( x ) + f ( 2 − x ) = x + s i n π x − 3 + ( 2 − x ) + s i n π ( 2 − x ) − 3 f(x)+f(2-x)=x+sin\pi x-3+(2-x)+sin\pi(2-x)-3 f(x)+f(2x)=x+sinπx3+(2x)+sinπ(2x)3

= s i n π x + s i n ( 2 π − π x ) − 4 = s i n π x − s i n π x − 4 = − 4 =sin\pi x+sin(2\pi-\pi x)-4=sin\pi x-sin\pi x-4=-4 =sinπx+sin(2ππx)4=sinπxsinπx4=4

结论: f ( x ) + f ( 2 − x ) = − 4 f(x)+f(2-x)=-4 f(x)+f(2x)=4

解析:故 f ( 1 2017 ) + f ( 2 2017 ) + ⋯ f(\cfrac{1}{2017})+f(\cfrac{2}{2017})+\cdots f(20171)+f(20172)+ + f ( 4032 2017 ) + f ( 4033 2017 ) +f(\cfrac{4032}{2017})+f(\cfrac{4033}{2017}) +f(20174032)+f(20174033)

= [ f ( 1 2017 ) + f ( 4033 2017 ) ] + [ f ( 2 2017 ) + f ( 4032 2017 ) ] + ⋯ + [ f ( 2016 2017 ) + f ( 2018 2017 ) ] + f ( 2017 2017 ) =[f(\cfrac{1}{2017})+f(\cfrac{4033}{2017})]+[f(\cfrac{2}{2017})+f(\cfrac{4032}{2017})]+\cdots+[f(\cfrac{2016}{2017})+f(\cfrac{2018}{2017})]+f(\cfrac{2017}{2017}) =[f(20171)+f(20174033)]+[f(20172)+f(20174032)]++[f(20172016)+f(20172018)]+f(20172017)

= 2016 × ( − 4 ) + f ( 1 ) = − 8064 + 1 + 0 − 3 = − 8066 =2016\times(-4)+f(1)=-8064+1+0-3=-8066 =2016×(4)+f(1)=8064+1+03=8066,故选 D D D

【利用类对称性求值】【2017宝鸡中学第一次月考第15题】已知函数 f ( x ) = x 2 1 + x 2 f(x)=\frac{x^2}{1+x^2} f(x)=1+x2x2,则 2 f ( 2 ) + 2f(2)+ 2f(2)+ 2 f ( 3 ) + 2f(3)+ 2f(3)+ ⋯ + 2 f ( 2017 ) \cdots+2f(2017) +2f(2017) + f ( 1 2 ) + +f(\frac{1}{2})+ +f(21)+ f ( 1 3 ) f(\frac{1}{3}) f(31) + ⋯ + f ( 1 2017 ) +\cdots+f(\frac{1}{2017}) ++f(20171) + 1 2 2 f ( 2 ) + +\frac{1}{2^2}f(2)+ +221f(2)+ 1 3 2 f ( 3 ) + ⋯ + \frac{1}{3^2}f(3)+\cdots+ 321f(3)++ 1 201 7 2 f ( 2017 ) \frac{1}{2017^2}f(2017) 201721f(2017)的值为多少?

分析:从研究函数的特殊性质入手,切入点是给定式子的结构;注意到自变量有 2 2 2 1 2 \cfrac{1}{2} 21

所以先尝试探究 f ( x ) + f ( 1 x ) f(x)+f(\frac{1}{x}) f(x)+f(x1),结果, f ( x ) + f ( 1 x ) = x 2 1 + x 2 + ( 1 x ) 2 1 + ( 1 x ) 2 = 1 f(x)+f(\frac{1}{x})=\frac{x^2}{1+x^2}+\cfrac{(\frac{1}{x})^2}{1+(\frac{1}{x})^2}=1 f(x)+f(x1)=1+x2x2+1+(x1)2(x1)2=1

这样就可以将中的一部分求值,剩余其他部分里面的代表为 f ( 2 ) + 1 2 2 f ( 2 ) f(2)+\cfrac{1}{2^2}f(2) f(2)+221f(2)

故接下来探究 f ( x ) + 1 x 2 f ( x ) = f(x)+\cfrac{1}{x^2}f(x)= f(x)+x21f(x)=?,结果发现 f ( x ) + 1 x 2 f ( x ) = x 2 1 + x 2 + 1 x 2 ⋅ x 2 1 + x 2 = 1 f(x)+\cfrac{1}{x^2}f(x)=\cfrac{x^2}{1+x^2}+\cfrac{1}{x^2}\cdot\cfrac{x^2}{1+x^2}=1 f(x)+x21f(x)=1+x2x2+x211+x2x2=1

到此我们以及对整个题目的求解心中有数了,则整个题目的求解思路基本清晰了。

解析:由 f ( x ) + f ( 1 x ) = 1 f(x)+f(\cfrac{1}{x})=1 f(x)+f(x1)=1 f ( x ) + 1 x 2 f ( x ) = 1 f(x)+\cfrac{1}{x^2}f(x)=1 f(x)+x21f(x)=1,可将所求式子变形得到:

2 f ( 2 ) + 2 f ( 3 ) + ⋯ + 2 f ( 2017 ) + f ( 1 2 ) + f ( 1 3 ) + ⋯ + f ( 1 2017 ) + 1 2 2 f ( 2 ) 2f(2)+2f(3)+\cdots+2f(2017)+f(\frac{1}{2})+f(\frac{1}{3})+\cdots+f(\frac{1}{2017})+\frac{1}{2^2}f(2) 2f(2)+2f(3)++2f(2017)+f(21)+f(31)++f(20171)+221f(2) + 1 3 2 f ( 3 ) + ⋯ + +\frac{1}{3^2}f(3)+\cdots+ +321f(3)++ 1 201 7 2 f ( 2017 ) \frac{1}{2017^2}f(2017) 201721f(2017)

= { [ f ( 2 ) + f ( 1 2 ) ] + [ f ( 3 ) + f ( 1 3 ) ] + ⋯ + [ f ( 2017 ) + f ( 1 2017 ) ] } =\{[f(2)+f(\frac{1}{2})]+[f(3)+f(\frac{1}{3})]+\cdots+[f(2017)+f(\frac{1}{2017})]\} ={[f(2)+f(21)]+[f(3)+f(31)]++[f(2017)+f(20171)]} + { [ f ( 2 ) + 1 2 2 f ( 2 ) ] + [ f ( 3 ) + 1 3 2 f ( 3 ) ] + ⋯ + + [ f ( 2017 ) + 1 201 7 2 f ( 2017 ) ] } +\{[f(2)+\frac{1}{2^2}f(2)]+[f(3)+\frac{1}{3^2}f(3)]+\cdots++[f(2017)+\frac{1}{2017^2}f(2017)]\} +{[f(2)+221f(2)]+[f(3)+321f(3)]+++[f(2017)+201721f(2017)]}

= 2016 + 2016 = 4032 =2016+2016=4032 =2016+2016=4032.

已知函数 f ( x ) = 3 9 x + 3 f(x)=\cfrac{3}{9^{x}+3} f(x)=9x+33.

(1). 求 f ( 1 ) + f ( 0 ) = f(1)+f(0)= f(1)+f(0)=______________; f ( x ) + f ( 1 − x ) = f(x)+f(1-x)= f(x)+f(1x)=_____________;

解析: f ( x ) = 3 9 x + 3 f(x)=\cfrac{3}{9^{x}+3} f(x)=9x+33,所以 f ( 1 ) + f ( 0 ) = 3 9 + 3 + 3 1 + 3 = 1 f(1)+f(0)=\cfrac{3}{9+3}+\cfrac{3}{1+3}=1 f(1)+f(0)=9+33+1+33=1

f ( x ) + f ( 1 − x ) = 3 9 x + 3 + 3 9 1 − x + 3 f(x)+f(1-x)=\cfrac{3}{9^{x}+3}+\cfrac{3}{9^{1-x}+3} f(x)+f(1x)=9x+33+91x+33

= 3 9 x + 3 + 3 ⋅ 9 x ( 9 1 − x + 3 ) ⋅ 9 x =\cfrac{3}{9^{x}+3}+\cfrac{3\cdot9^{x}}{(9^{1-x}+3)\cdot 9^{x}} =9x+33+(91x+3)9x39x

= 3 9 x + 3 + 9 x 3 + 9 x = 1 =\cfrac{3}{9^{x}+3}+\cfrac{9^{x}}{3+9^{x}}=1 =9x+33+3+9x9x=1

(2). 记 S m = f ( 1 m ) + f ( 2 m ) + ⋯ + f ( m − 1 m ) + f ( m m ) S_{m}=f(\cfrac{1}{m})+f(\cfrac{2}{m})+\cdots+f(\cfrac{m-1}{m})+f(\cfrac{m}{m}) Sm=f(m1)+f(m2)++f(mm1)+f(mm), 求 S m = S_{m}= Sm=__________.

解析: 可知 f ( x ) + f ( 1 − x ) = 1 f(x)+f(1-x)=1 f(x)+f(1x)=1 f ( 1 ) = 1 4 f(1)=\cfrac{1}{4} f(1)=41

S m = f ( 1 m ) + f ( 2 m ) + ⋯ + f ( m − 1 m ) + f ( m m ) S_{m}=f(\cfrac{1}{m})+f(\cfrac{2}{m})+\cdots+f(\cfrac{m-1}{m})+f(\cfrac{m}{m}) Sm=f(m1)+f(m2)++f(mm1)+f(mm)

S m = f ( m − 1 m ) + f ( m − 2 m ) + ⋯ + f ( 1 m ) + f ( m m ) S_{m}=f(\cfrac{m-1}{m})+f(\cfrac{m-2}{m})+\cdots+f(\cfrac{1}{m})+f(\cfrac{m}{m}) Sm=f(mm1)+f(mm2)++f(m1)+f(mm)

两式相加得:

2 S m = [ f ( 1 m ) + f ( m − 1 m ) ] + [ f ( 2 m ) + f ( m − 2 m ) ] + ⋯ + [ f ( m − 1 m ) + f ( 1 m ) ] + 2 f ( 1 ) 2 S_{m}=[f(\cfrac{1}{m})+f(\cfrac{m-1}{m})]+[f(\cfrac{2}{m})+f(\cfrac{m-2}{m})]+\cdots+[f(\cfrac{m-1}{m})+f(\cfrac{1}{m})]+2 f(1) 2Sm=[f(m1)+f(mm1)]+[f(m2)+f(mm2)]++[f(mm1)+f(m1)]+2f(1)

= m − 1 + 1 2 = m − 1 2 =m-1+\cfrac{1}{2}=m-\cfrac{1}{2} =m1+21=m21, 所以 $S_{m}=\cfrac{2 m-1}{4} $.

解后反思:本题主要考查数列的综合运用,涉及了倒序相加法,函数性质等知识,属于中档题。

【2022届高三数学三轮模拟冲刺用题】倒序相加法的原理是基于所给数据前后对应项的和呈现一定的规律生成,现有函数 f ( x ) = 2 x 3 m + 6069 f(x)=\cfrac{2x}{3m+6069} f(x)=3m+60692x,则 f ( 1 ) + f ( 2 ) + f ( 3 ) + ⋯ + f ( m + 2022 ) f(1)+f(2)+f(3)+\cdots+f(m+2022) f(1)+f(2)+f(3)++f(m+2022) 等于 \qquad

$A.\cfrac{m+2022}{3}$ $B.\cfrac{2m+4044}{3}$ $C.\cfrac{m+4044}{6}$ $D.\cfrac{2m+4045}{6}$

解析: f ( 1 ) + f ( 2 ) + f ( 3 ) + ⋯ + f ( m + 2022 ) f(1)+f(2)+f(3)+\cdots+f(m+2022) f(1)+f(2)+f(3)++f(m+2022)

= 2 × 1 3 m + 6069 + 2 × 2 3 m + 6069 + 2 × 3 3 m + 6069 + ⋯ + 2 × ( m + 2022 ) 3 m + 6069 =\cfrac{2\times1}{3m+6069}+\cfrac{2\times2}{3m+6069}+\cfrac{2\times3}{3m+6069}+\cdots+\cfrac{2\times(m+2022)}{3m+6069} =3m+60692×1+3m+60692×2+3m+60692×3++3m+60692×(m+2022)

f ( m + 2022 ) + f ( m + 2021 ) + ⋯ + f ( 2 ) + f ( 1 ) f(m+2022)+f(m+2021)+\cdots+f(2)+f(1) f(m+2022)+f(m+2021)++f(2)+f(1)

= 2 × ( m + 2022 ) 3 m + 6069 + 2 × ( m + 2021 ) 3 m + 6069 + ⋯ + 2 × 2 3 m + 6069 + 2 × 1 3 m + 6069 =\cfrac{2\times(m+2022)}{3m+6069}+\cfrac{2\times(m+2021)}{3m+6069}+\cdots+\cfrac{2\times2}{3m+6069}+\cfrac{2\times1}{3m+6069} =3m+60692×(m+2022)+3m+60692×(m+2021)++3m+60692×2+3m+60692×1

由于 2 × 1 3 m + 6069 + 2 × ( m + 2022 ) 3 m + 6069 = 2 3 \cfrac{2\times1}{3m+6069}+\cfrac{2\times(m+2022)}{3m+6069}=\cfrac{2}{3} 3m+60692×1+3m+60692×(m+2022)=32 ⋯ \cdots 2 × ( m + 2022 ) 3 m + 6069 + 2 × 1 3 m + 6069 = 2 3 \cfrac{2\times(m+2022)}{3m+6069}+\cfrac{2\times1}{3m+6069}=\cfrac{2}{3} 3m+60692×(m+2022)+3m+60692×1=32

2 [ f ( 1 ) + f ( 2 ) + f ( 3 ) + ⋯ + f ( m + 2022 ) ] = ( m + 2022 ) × 2 3 2[f(1)+f(2)+f(3)+\cdots+f(m+2022)]=(m+2022)\times\cfrac{2}{3} 2[f(1)+f(2)+f(3)++f(m+2022)]=(m+2022)×32

f ( 1 ) + f ( 2 ) + f ( 3 ) + ⋯ + f ( m + 2022 ) = m + 2022 3 f(1)+f(2)+f(3)+\cdots+f(m+2022)=\cfrac{m+2022}{3} f(1)+f(2)+f(3)++f(m+2022)=3m+2022,故选 A A A .

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值