限定条件下的均值不等式求最值01

前言

我们之所以感觉高三或高四很辛苦,除过高中最后一学年是冲刺阶段,任务量大,知识难度大,知识使用灵活,综合程度高,考查频次高,学习强度大这些原因之外,还有一个很重要的原因,就是我们不少学生一直在低效率层次上运转,但愿下面的题组和知识的总结方法,或许能给你一些学习方法和数学思维上启迪。

限定条件下的均值不等式使用 为案例作以说明,这本来也是重点和难点;

案例说明

模型详析:均值不等式中有一类常考题型,比如求限定条件下的最值问题,对应的解决方法是:常数代换或乘常数再除常数。

:已知 2 m + 3 n = 2 , m > 0 , n > 0 2m+3n=2,m>0,n>0 2m+3n=2m>0n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。 分析如下:

4 m + 1 n = 1 2 ⋅ ( 2 m + 3 n ) ( 4 m + 1 n ) \cfrac{4}{m}+\cfrac{1}{n}=\cfrac{1}{2}\cdot (2m+3n)(\cfrac{4}{m}+\cfrac{1}{n}) m4+n1=21(2m+3n(m4+n1)

= 1 2 ⋅ ( 8 + 3 + 2 m n + 12 n m ) =\cfrac{1}{2}\cdot (8+3+\cfrac{2m}{n}+\cfrac{12n}{m}) =21(8+3+n2m+m12n)

≥ 1 2 ( 11 + 4 6 ) \ge \cfrac{1}{2}(11+4\sqrt{6}) 21(11+46 )

当且仅当 { 2 m + 3 n = 2 2 m n = 12 n m \left\{\begin{array}{l}{2m+3n=2}\\{\cfrac{2m}{n}=\cfrac{12n}{m}}\end{array}\right. 2m+3n=2n2m=m12n时取到等号;

掌握了上述的模型,就能解决这一类问题了吗,回答是否定的,因为限定条件完全可能会以其他形式给出来。请通过下列的例子自行体会、把握。

✍️ 限定条件以简单变形形式给出

已知 m > 0 , n > 0 , m + 3 2 n = 1 m>0,n>0,m+\cfrac{3}{2}n=1 m>0n>0m+23n=1,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。

又或已知 m > 0 , n > 0 , 1 n + 3 n 2 m = 1 m n m>0,n>0,\cfrac{1}{n}+\cfrac{3n}{2m}=\cfrac{1}{mn} m>0n>0n1+2m3n=mn1,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。

详解:此时只需要将已知条件转化为 2 m + 3 n = 2 2m+3n=2 2m+3n=2,接下来,就转化为上述题目了,你就应该会了。

解后反思:注意数学表达式的等价变形。

✍️ 限定条件以直线的形式给出

已知点 P ( m , n ) P(m,n) P(mn)在直线 2 x + 3 y = 2 , x > 0 , y > 0 2x+3y=2,x>0,y>0 2x+3y=2x>0y>0上,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。

详解:则有 2 m + 3 n = 2 2m+3n=2 2m+3n=2,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值,又转化为上述问题了。

解后反思:注意其他数学知识的准确应用。

限定条件以线性规划形式给出

如已知 x , y x,y xy满足约束条件 { x + y ≥ 3 x − y ≥ − 1 2 x − y ≤ 3 \begin{cases} &x+y\ge 3 \\ &x-y\ge -1 \\ &2x-y\leq 3 \end{cases} x+y3xy12xy3 ,若目标函数 z = a x + b y ( a > 0 , b > 0 ) z=ax+by(a>0,b>0) z=ax+bya0b0的最大值为10,则 5 a + 4 b \cfrac{5}{a}+\cfrac{4}{b} a5+b4的最小值为多少?

详解:做出可行域可知,

当目标直线经过点 ( 4 , 5 ) (4,5) (45)时,函数取得最大值,

即此时题目相当于已知 4 a + 5 b = 10 4a+5b=10 4a+5b=10,求 5 a + 4 b \cfrac{5}{a}+\cfrac{4}{b} a5+b4的最小值,不是又转化为上述问题了吗?

解后反思:注意其他数学知识点的准确表达。

限定条件以极限或定积分的形式给出

已知 lim ⁡ x → 1 + f ( x ) = lim ⁡ x → 1 + x x 2 + 3 x + 1 = m + n , m > 0 , n > 0 \lim\limits_{x\to 1^+} f(x)=\lim\limits_{x\to 1^+}\cfrac{x}{x^2+3x+1}=m+n,m>0,n>0 x1+limf(x)=x1+limx2+3x+1x=m+nm>0n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。

如已知 ∫ 1 2 x    d x = m + n , m > 0 , n > 0 \int_{1}^{2} x\; dx=m+n,m>0,n>0 12xdx=m+nm>0n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。

详解:你可能不会极限和定积分的运算,但是肯定能知道,运算到最后的结果必然是 m + n = m+n= m+n=某个确定的值,比如 m + n = 1 5 m+n=\cfrac{1}{5} m+n=51,这样题目就转化为已知 m + n = 1 5 , m > 0 , n > 0 m+n=\cfrac{1}{5},m>0,n>0 m+n=51m>0n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值,这不就是上述题目吗?

解后反思:注意其他数学知识点的准确计算和表达。

限定条件以二项式系数的形式给出

已知 ( x 2 + 1 ) 9 (\cfrac{x}{2}+1)^9 (2x+1)9展开式中,含 x 3 x^3 x3项的系数为 m + n , m > 0 , n > 0 m+n,m>0,n>0 m+nm>0n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。

详解: ( x 2 + 1 ) 9 (\cfrac{x}{2}+1)^9 (2x+1)9展开式中通项公式为 T r + 1 = C 9 r ⋅ ( x 2 ) 9 − r ⋅ 1 r = C 9 r ⋅ x 9 − r ⋅ ( 1 2 ) 9 − r ⋅ 1 r T_{r+1}=C_9^r\cdot (\cfrac{x}{2})^{9-r}\cdot 1^r=C_9^r\cdot x^{9-r}\cdot (\cfrac{1}{2})^{9-r}\cdot 1^r Tr+1=C9r(2x)9r1r=C9rx9r(21)9r1r,当 r = 6 r=6 r=6时,含 x 3 x^3 x3项的系数为 C 9 6 ⋅ ( 1 2 ) 9 − 6 = 21 2 C_9^6\cdot (\cfrac{1}{2})^{9-6}=\cfrac{21}{2} C96(21)96=221

到此题目转化为已知 m + n = 21 2 , m > 0 , n > 0 m+n=\cfrac{21}{2},m>0,n>0 m+n=221m>0n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。这不就是上述题目吗?

解后反思:注意其他数学知识点的准确计算和表达。

限定条件以数列形式给出

已知正项等比数列 { a n } \{a_n\} {an}满足: a 7 = a 6 + 2 a 5 a_7=a_6+2a_5 a7=a6+2a5,若存在两项 a m , a n a_m,a_n aman,使得 a m a n = 16 a 1 2 a_ma_n=16a_1^2 aman=16a12,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值。

详解:由 a 7 = a 6 + 2 a 5 a_7=a_6+2a_5 a7=a6+2a5,得到 a 5 ⋅ q 2 = a 5 ⋅ q + 2 a 5 a_5\cdot q^2=a_5\cdot q+2a_5 a5q2=a5q+2a5,解得 q = 2 q=2 q=2 q = − 1 q=-1 q=1(舍去负值),这样由 a m ⋅ a n = 16 a 1 2 a_m\cdot a_n=16a_1^2 aman=16a12

得到 ( a 1 ) 2 ⋅ 2 m − 1 ⋅ 2 n − 1 = 16 a 1 2 (a_1)^2\cdot 2^{m-1}\cdot 2^{n-1}=16a_1^2 (a1)22m12n1=16a12,即 2 m − 1 ⋅ 2 n − 1 = 16 = 2 4 2^{m-1}\cdot 2^{n-1}=16=2^4 2m12n1=16=24

m + n = 6 , m > 0 , n > 0 m+n=6,m >0,n >0 m+n=6m>0n>0,求 4 m + 1 n \cfrac{4}{m}+\cfrac{1}{n} m4+n1的最小值,这样不就好解多了吗?

解后反思:注意其他数学知识点的准确计算和表达。

限定条件以复合函数形式给出

已知函数 f ( x ) = ∣ 1 − 1 x ∣ f(x)=|1-\cfrac{1}{x}| f(x)=∣1x1,若 0 < a < b 0<a<b 0<a<b且满足方程 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)当你完整解完本题目,你会发现,这句话的用意是为了告诉你 1 a \cfrac{1}{a} a1 + + + 1 b \cfrac{1}{b} b1 = = = 2 2 2,从而接下来能利用均值不等式求解求最小值;,求 4 a + b 4a+b 4a+b的最小值;

解析:由 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b),即 ∣ 1 − 1 a ∣ = ∣ 1 − 1 b ∣ |1-\cfrac{1}{a}|=|1-\cfrac{1}{b}| ∣1a1=∣1b1,结合 f ( x ) f(x) f(x)的图象可知, a < 1 < b a<1<b a<1<b

故去掉绝对值符号,得到 1 a − 1 = 1 − 1 b \cfrac{1}{a}-1=1-\cfrac{1}{b} a11=1b1

故得到 1 a + 1 b = 2 \cfrac{1}{a}+\cfrac{1}{b}=2 a1+b1=2,且 0 < a < 1 < b 0<a<1<b 0<a<1<b

4 a + b = 1 2 × 2 × ( 4 a + b ) = 1 2 × ( 1 a + 1 b ) × ( 4 a + b ) 4a+b=\cfrac{1}{2}\times 2 \times(4a+b)=\cfrac{1}{2}\times(\cfrac{1}{a}+\cfrac{1}{b})\times(4a+b) 4a+b=21×2×(4a+b)=21×(a1+b1)×(4a+b)

= 1 2 ( 4 + 1 + b a + 4 a b ) ⩾ 1 2 ( 5 + 2 4 = 9 =\cfrac{1}{2}(4+1+\cfrac{b}{a}+\cfrac{4a}{b})\geqslant \cfrac{1}{2}(5+2\sqrt{4}=9 =21(4+1+ab+b4a)21(5+24 =9

当且仅当 b a = 4 a b \cfrac{b}{a}=\cfrac{4a}{b} ab=b4a 1 a + 1 b = 2 \cfrac{1}{a}+\cfrac{1}{b}=2 a1+b1=2 时,

a = 3 4 a=\cfrac{3}{4} a=43 b = 3 2 b=\cfrac{3}{2} b=23 时取到等号;故 ( 4 a + b ) min ⁡ = 9 2 (4a+b)_{\min}=\cfrac{9}{2} (4a+b)min=29 .

  • 8
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值