直线方程和直线系方程

直线的方程

  • 点斜式: y − y 1 = k ( x − x 1 ) y-y_1=k(x-x_1) yy1=k(xx1)(其中 l l l过定点 P 1 ( x 1 , y 1 ) P_1(x_1,y_1) P1(x1y1),斜率为 k k k);

缺陷:不能表示斜率不存在的直线;

  • 斜截式: y = k x + b y=kx+b y=kx+b( k k k是斜率, b b b y y y截距);

缺陷:不能表示斜率不存在的直线;

  • 两点式: y − y 1 y 2 − y 1 = x − x 1 x 2 − x 1 ( x 1 ≠ x 2 , y 1 ≠ y 2 ) \cfrac{y-y_1}{y_2-y_1}=\cfrac{x-x_1}{x_2-x_1}(x_1\neq x_2,y_1\neq y_2) y2y1yy1=x2x1xx1(x1=x2y1=y2)(两点是 P 1 ( x 1 , y 1 ) 、 P 2 ( x 2 , y 2 ) P_1(x_1,y_1)、P_2(x_2,y_2) P1(x1y1)P2(x2y2)),

缺陷:不能表示斜率不存在的和斜率为0的直线;

  • 截距式: x a + y b = 1 ( a ≠ 0 , b ≠ 0 ) \cfrac{x}{a}+\cfrac{y}{b}=1(a\neq 0,b\neq 0) ax+by=1(a=0b=0)( a , b a,b a,b分别是横截距和纵截距),

缺陷:不能表示过原点的直线;

  • 一般式: A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0

没有上述直线方程的缺陷。直线的平行与垂直的刻画,用一般式来说,只要一种即可,如果用其他的形式,则必须做补充说明,很麻烦的;

直线的参数方程

  • 以动点到定点的有向线段的数量为参数,得到直线的参数方程如下:

{ x = x 0 + c o s θ ⋅ t y = y 0 + s i n θ ⋅ t ( t 为参数 ) \left\{\begin{array}{l}{x=x_0+cos\theta\cdot t}\\{y=y_0+sin\theta\cdot t}\end{array}\right.(t为参数) {x=x0+cosθty=y0+sinθt(t为参数)

引申:如何将一个直线的普通方程转化为参数方程?

如给定直线 y = 2 x + 1 y=2x+1 y=2x+1,其中点 ( 0 , 1 ) (0,1) (01),点 ( 1 , 3 ) (1,3) (13)都在其上,

我们现在想求做过点 ( 1 , 3 ) (1,3) (13)的直线 y = 2 x + 1 y=2x+1 y=2x+1的参数方程,

可以这样做,依照模板 { x = x 0 + c o s θ ⋅ t y = y 0 + s i n θ ⋅ t ( t 为参数 ) \left\{\begin{array}{l}{x=x_0+cos\theta \cdot t}\\{y=y_0+sin\theta\cdot t}\end{array}\right.(t为参数) {x=x0+cosθty=y0+sinθt(t为参数)

定点坐标为 ( x 0 , y 0 ) = ( 1 , 3 ) (x_0,y_0)=(1,3) (x0y0)=(13)

可知 k = t a n θ = 2 k=tan\theta=2 k=tanθ=2,引入非零比例因子 k k k

得到 s i n θ = 2 k sin\theta=2k sinθ=2k c o s θ = k ( k > 0 ) cos\theta=k(k>0) cosθ=k(k>0)

s i n 2 θ + c o s 2 θ = 1 sin^2\theta+cos^2\theta=1 sin2θ+cos2θ=1,得到 k = 5 5 k=\cfrac{\sqrt{5}}{5} k=55

则可知 c o s θ = 5 5 cos\theta=\cfrac{\sqrt{5}}{5} cosθ=55 s i n θ = 2 5 5 sin\theta=\cfrac{2\sqrt{5}}{5} sinθ=525

故所给定直线 y = 2 x + 1 y=2x+1 y=2x+1的参数方程为

{ x = 1 + 5 5 t y = 3 + 2 5 5 t ( t 为参数 ) \left\{\begin{array}{l}{x=1+\cfrac{\sqrt{5}}{5} t}\\{y=3+\cfrac{2\sqrt{5}}{5} t}\end{array}\right.(t为参数) x=1+55 ty=3+525 t(t为参数)

总结思路:①找个定点;②求解 c o s θ cos\theta cosθ s i n θ sin\theta sinθ;③带入模板,OK!

直线的向量式方程

设向量 O A → \overrightarrow{OA} OA O B → \overrightarrow{OB} OB 不共线,向量 O C → \overrightarrow{OC} OC 满足表达式:

O C → = λ O A → + ( 1 − λ ) O B → \overrightarrow{OC}=\lambda\overrightarrow{OA}+(1-\lambda)\overrightarrow{OB} OC =λOA +(1λ)OB

则可知点 A A A B B B C C C 三点共线,即动点 C C C 在 直线 A B AB AB 上,故此表达式也称作直线的向量式方程。

直线系方程

  • 定点直线系方程,[是一族直线,不是一条直线,当 k k k的取值不同时就对应不同的直线]

经过定点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0y0)的直线系方程是 y − y 0 = k ( x − x 0 ) y-y_0=k(x-x_0) yy0=k(xx0)( k k k是待定系数)或者是 A ( x − x 0 ) + B ( y − y 0 ) = 0 A(x-x_0)+B(y-y_0)=0 A(xx0)+B(yy0)=0( A A A B B B)是待定系数;

  • 共点直线系方程,[指经过两条直线共用的交点的一族直线,当 λ \lambda λ的取值不同时就对应不同的直线]

给定两条直线 l 1 : A 1 x + B 1 y + C 1 = 0 l_1:A_1x+B_1y+C_1=0 l1A1x+B1y+C1=0 l 2 : A 2 x + B 2 y + C 2 = 0 l_2:A_2x+B_2y+C_2=0 l2A2x+B2y+C2=0,则经过两条直线 l 1 l_1 l1 l 2 l_2 l2的交点[联立两个直线方程即可求得交点坐标]的直线系方程为 ( A 1 x + B 1 y + C 1 ) + λ ( A 2 x + B 2 y + C 2 ) = 0 (A_1x+B_1y+C_1)+\lambda (A_2x+B_2y+C_2)=0 (A1x+B1y+C1)+λ(A2x+B2y+C2)=0(这族直线中不包含直线 l 2 l_2 l2),其中 λ \lambda λ是待定系数。

解释说明:共点直线系方程中为什么不包括 l 2 l_2 l2

由于共点直线系方程为 ( A 1 x + B 1 y + C 1 ) + λ ( A 2 x + B 2 y + C 2 ) = 0 (A_1x+B_1y+C_1)+\lambda (A_2x+B_2y+C_2)=0 (A1x+B1y+C1)+λ(A2x+B2y+C2)=0

则当 λ = 0 \lambda=0 λ=0时,说明此时随 λ \lambda λ取值变化的直线系中刚好刻画的是直线 l 1 l_1 l1

λ ≠ 0 \lambda\neq 0 λ=0时,要使得刻画的是直线 l 2 l_2 l2,则需要 A 1 x + B 1 y + C 1 = 0 A_1x+B_1y+C_1=0 A1x+B1y+C1=0,而它前边系数的系数为 1 1 1,不是 0 0 0,故不可能突变为 0 0 0,这样整个的运算结果就不可能变为 A 2 x + B 2 y + C 2 = 0 A_2x+B_2y+C_2=0 A2x+B2y+C2=0,故共点直线系方程中不包括直线 l 2 l_2 l2

同理,如果我们将共点直线系方程写为 λ ( A 1 x + B 1 y + C 1 ) + ( A 2 x + B 2 y + C 2 ) = 0 \lambda (A_1x+B_1y+C_1)+(A_2x+B_2y+C_2)=0 λ(A1x+B1y+C1)+(A2x+B2y+C2)=0,则此时共点直线系方程中就不包含直线 l 1 l_1 l1

用课件做以说明。

  • 平行直线系方程

直线 y = k x + b y=kx+b y=kx+b中,当 k k k为常数而 b b b变化时,表示一族平行直线方程;与直线 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0平行的直线系方程是 A x + B y + λ = 0 ( C ≠ λ Ax+By+\lambda=0(C\neq \lambda Ax+By+λ=0(C=λ,即不包含两直线重合情况, λ \lambda λ 为参数)。

  • 垂直直线系方程

与直线 A x + B y + C = 0 ( A ≠ 0 , B ≠ 0 ) Ax+By+C=0(A\neq 0,B\neq 0) Ax+By+C=0(A=0B=0)垂直的直线系方程是 B x − A y + λ = 0 ( λ 为参数 ) Bx-Ay+\lambda=0(\lambda 为参数) BxAy+λ=0(λ为参数)

圆的切线方程

已知圆 x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2,则可知

①过圆上的点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0y0)的切线方程是 x 0 x + y 0 y = r 2 x_0x+y_0y=r^2 x0x+y0y=r21 向量证明方法见必修四P99 例3。

②斜率为 k k k的直线成为圆的的切线方程为 y = k x ± r 1 + k 2 y=kx\pm r\sqrt{1+k^2} y=kx±r1+k2

两圆相交弦方程

【引例】:比如给定 ⊙ C 1 : ( x − 1 ) 2 + ( y − 1 ) 2 = 4 \odot C_1:(x-1)^2+(y-1)^2=4 C1(x1)2+(y1)2=4①, ⊙ C 2 : ( x + 1 ) 2 + ( y + 1 ) 2 = 4 \odot C_2:(x+1)^2+(y+1)^2=4 C2(x+1)2+(y+1)2=4②,求两圆的相交弦所在的直线方程。

分析:设两个圆相交后的公共点为 A ( x 1 , y 1 ) A(x_1,y_1) A(x1y1) B ( x 2 , y 2 ) B(x_2,y_2) B(x2y2)

则由点 A A A满足圆 C 1 C_1 C1和圆 C 2 C_2 C2,,得到 ( x 1 − 1 ) 2 + ( y 1 − 1 ) 2 = 4 (x_1-1)^2+(y_1-1)^2=4 (x11)2+(y11)2=4 ( x 1 + 1 ) 2 + ( y 1 + 1 ) 2 = 4 (x_1+1)^2+(y_1+1)^2=4 (x1+1)2+(y1+1)2=4

两式相减整理得到, y 1 = − x 1 y_1=-x_1 y1=x1

由点 B B B满足圆 C 1 C_1 C1和圆 C 2 C_2 C2,,得到 ( x 2 − 1 ) 2 + ( y 2 − 1 ) 2 = 4 (x_2-1)^2+(y_2-1)^2=4 (x21)2+(y21)2=4 ( x 2 + 1 ) 2 + ( y 2 + 1 ) 2 = 4 (x_2+1)^2+(y_2+1)^2=4 (x2+1)2+(y2+1)2=4

两式相减整理得到, y 2 = − x 2 y_2=-x_2 y2=x2

说明点 A ( x 1 , y 1 ) A(x_1,y_1) A(x1y1) B ( x 2 , y 2 ) B(x_2,y_2) B(x2y2)都在直线 y = − x y=-x y=x上,故两圆的相交弦所在的直线方程为 y = − x y=-x y=x

简单操作:由①-②得到,经过两个圆的相交弦方程为 − 2 x − 2 x − 2 y − 2 y = 0 -2x-2x-2y-2y=0 2x2x2y2y=0,即 y = − x y=-x y=x

由此类比得到更一般化的情形:

给定 ⊙ C 1 : ( x − a ) 2 + ( y − b ) 2 = e \odot C_1:(x-a)^2+(y-b)^2=e C1(xa)2+(yb)2=e①, ⊙ C 2 : ( x − c ) 2 + ( y − d ) 2 = f \odot C_2:(x-c)^2+(y-d)^2=f C2(xc)2+(yd)2=f②,注意两圆必须相交; 由①-②得到,经过两个圆的相交弦方程为 ( 2 c − 2 a ) x + ( 2 d − 2 b ) y + a 2 − c 2 + b 2 − d 2 − e + f = 0 (2c-2a)x+(2d-2b)y+a^2-c^2+b^2-d^2-e+f=0 (2c2a)x+(2d2b)y+a2c2+b2d2e+f=0

典例剖析

【2019届宝鸡市高三理科数学质检Ⅱ第3题】若直线 x + ( 1 + m ) y − 2 = 0 x+(1+m)y-2=0 x+(1+m)y2=0与直线 m x + 2 y + 4 = 0 mx+2y+4=0 mx+2y+4=0平行,则 m m m的值为 \qquad

$A.1$ $B.-2$ $C.1或-2$ $D.-\cfrac{3}{2}$

分析:由题可知, 1 m = m + 1 2 ≠ − 2 4 \cfrac{1}{m}=\cfrac{m+1}{2}\neq \cfrac{-2}{4} m1=2m+1=42①,具体求解时我们往往只利用下式求值,

1 m = m + 1 2 \cfrac{1}{m}=\cfrac{m+1}{2} m1=2m+1②,解得 m = 1 m=1 m=1 m = − 2 m=-2 m=2,由于刚才扩大了范围,故此时需要代入①式验证,

验证得到 m = − 2 m=-2 m=2时不符,故 m = 1 m=1 m=1,则选 A A A

反思:满足②式的解不见得就一定满足①式,故不要忘记验证。补充直线平行或垂直的充要条件。

求直线方程的方法

待补充:①直接法②公式法③直线系法④向量法⑤相关点法⑥参数法⑦结构分析法⑧点差法


  1. 证明:由于点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0y0)在圆 x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2上,故有 x 0 2 + y 0 2 = r 2 x_0^2+y_0^2=r^2 x02+y02=r2
    又由于直线 O P OP OP的斜率 k 1 = y 0 x 0 k_1=\cfrac{y_0}{x_0} k1=x0y0,故和直线 O P OP OP垂直的圆的切线的斜率为 k 0 = − x 0 y 0 k_0=-\cfrac{x_0}{y_0} k0=y0x0
    由点斜式可得,过圆上的点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0y0)的切线方程为 y − y 0 = k 0 ( x − x 0 ) y-y_0=k_0(x-x_0) yy0=k0(xx0)

    y − y 0 = − x 0 y 0 ( x − x 0 ) y-y_0=-\cfrac{x_0}{y_0}(x-x_0) yy0=y0x0(xx0),整理为 x 0 x + y 0 y = x 0 2 + y 0 2 x_0x+y_0y=x_0^2+y_0^2 x0x+y0y=x02+y02,又 x 0 2 + y 0 2 = r 2 x_0^2+y_0^2=r^2 x02+y02=r2
    故整理得到切线方程为 x 0 x + y 0 y = r 2 x_0x+y_0y=r^2 x0x+y0y=r2↩︎

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值