直线参数方程何时必须化为标准形式

前言

在求解直线与圆相交得到的弦的长度问题时,可以采用的思路很多:

①利用几何方法,即利用弦心距、半弦长、半径组成的 R t △ Rt\triangle Rt来求解决;

②弦长公式,即 ∣ A B ∣ = 1 + k 2 ⋅ ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}\cdot |x_1-x_2| AB=1+k2 x1x2来求解;

③利用直线的参数方程的参数的几何意义来求解;

思路引申

当涉及到的是直线和圆时,此时思路①最简单快捷;但是从思路可移植的角度来思考[比如问题变化为直线和圆锥曲线相交得到的弦长问题],思路③应该是最值得掌握的思路,此时思路①已经不能用了,思路②的运算量往往比较大,容易出错;

但思路③有个问题,在使用直线的参数方程时,必须要检验其是参数方程的标准形式,否则结果往往会出错;在此有两个问题:其一,为什么使用直线的参数方程的几何意义求弦长问题简单?其二,为什么必须将直线的参数方程的非标准形式转化为标准形式?

问题解析

预备知识:

  • 借助一维数轴来理解 t t t的几何意义

我们知道,一维数轴上的点和实数是一一对应的,如图所示,水平放置的数轴,其上的点 A A A O O O B B B C C C D D D分别代表实数 − 2 -2 2 0 0 0 1 1 1 2 2 2 3 3 3;动点对应的实数标记为 t t t,那么 t = 2 t=2 t=2就对应点 C C C t = − 2 t=-2 t=2就对应点 A A A t = 0 t=0 t=0就对应点 O O O t = 1 t=1 t=1就对应点 B B B,当变量 t t t取遍所有的实数,那么动点就能代表数轴上所有的实数。这时候实数 t t t就是数轴上的动点的一维坐标。

作用:此时若求线段的长度,则线段 A B = ∣ t A − t B ∣ = ∣ − 2 − 1 ∣ = 3 AB=|t_A-t_B|=|-2-1|=3 AB=tAtB=21∣=3;线段 B D = BD= BD= ∣ t B − t D ∣ |t_B-t_D| tBtD = ∣ 1 − 3 ∣ =|1-3| =∣13∣ = 2 =2 =2;

接下来,我们利用如下的参数方程[已经是标准形式]来求线段长或弦长;

在平面直角坐标系 x O y xOy xOy中,直线 l l l的参数方程为 { x = 2 + 2 2 t y = 1 + 2 2 t \left\{\begin{array}{l}{x=2+\cfrac{\sqrt{2}}{2}t}\\{y=1+\cfrac{\sqrt{2}}{2}t}\end{array}\right. x=2+22 ty=1+22 t( t t t为参数),

问题1:为什么使用直线的参数方程的几何意义求弦长问题简单?

t 0 = 0 t_0=0 t0=0时,其对于点 P 0 ( 2 , 1 ) P_0(2,1) P0(21);当 t 1 = 1 t_1=1 t1=1时,其对于点 P 1 ( 2 + 2 2 , 1 + 2 2 ) P_1(2+\cfrac{\sqrt{2}}{2},1+\cfrac{\sqrt{2}}{2}) P1(2+22 1+22 )

此时求线段 ∣ P 0 P 1 ∣ |P_0P_1| P0P1的长度,可以用如下的两个思路来求解:

思路①: ∣ P 0 P 1 ∣ = ( 2 + 2 2 − 2 ) 2 + ( 1 + 2 2 − 1 ) 2 = ( 2 2 ) 2 + ( 2 2 ) 2 = 1 |P_0P_1|=\sqrt{(2+\cfrac{\sqrt{2}}{2}-2)^2+(1+\cfrac{\sqrt{2}}{2}-1)^2}=\sqrt{(\cfrac{\sqrt{2}}{2})^2+(\cfrac{\sqrt{2}}{2})^2}=1 P0P1=(2+22 2)2+(1+22 1)2 =(22 )2+(22 )2 =1

思路②: ∣ P 0 P 1 ∣ = ∣ t 0 − t 1 ∣ = ∣ 0 − 1 ∣ = 1 |P_0P_1|=|t_0-t_1|=|0-1|=1 P0P1=t0t1=∣01∣=1

很显然,思路②的运算简单的多,只是好些同学不懂得为什么要这样计算?

很显然,思路 ① 采用的是两个点的二维坐标来运算,而思路 ② 是利用两个点的一维坐标来计算,如上图所示,点 P 0 P_0 P0类似于数轴中的原点,那么点 P 1 P_1 P1是数轴右方的第一个单位点,点 P 2 P_2 P2是数轴右方的第二个单位点,故 ∣ P 0 P 1 ∣ |P_0P_1| P0P1的长应该是一个单位。故利用一维坐标肯定比二维坐标计算量要小。

问题2:为什么必须将直线的参数方程的非标准形式转化为标准形式?

预备知识:在平面直角坐标系 x o y xoy xoy中,直线 l l l的参数方程为 { x = 2 + t y = 1 + 2 t \left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right. {x=2+ty=1+2t( t t t为参数),

如上图所示,当 t 0 = 0 t_0=0 t0=0时,对应上图中的点 A ( 2 , 1 ) A(2,1) A(2,1),当 t 1 = 1 t_1=1 t1=1时,对应上图中的点 B ( 3 , 3 ) B(3,3) B(3,3)

此时 ∣ A B ∣ = ( 2 − 3 ) 2 + ( 1 − 3 ) 2 = 5 |AB|=\sqrt{(2-3)^2+(1-3)^2}=\sqrt{5} AB=(23)2+(13)2 =5 ;其长度不是一个单位长,故其不是参数方程的标准形式,

在教学实践中,我们常用参数 t t t前面的两个系数的平方和是否等于 1 1 1来判断是否为标准形式;

如上, 1 2 + 2 2 = 5 ≠ 1 1^2+2^2=5\neq 1 12+22=5=1,故上述的参数方程不是标准形式。

如果直线的参数方程不是标准形式,则其参数 t t t的几何意义就不是动点到定点的有向线段的数量,类似于我们不用标准的米尺测量人的身高,则测量的身高数据一定是不准确的;故使用前必须保证其为标准形式;

那么,如何将参数方程的非标准形式转化为标准形式呢,请参照下述例题中的具体解法来体会。

  • 非标准形式化为标准形式的思路

{ x = x 0 + a t = x 0 + a a 2 + b 2 ⋅ a 2 + b 2 t y = y 0 + b t = y 0 + b a 2 + b 2 ⋅ a 2 + b 2 t ( t 为参数 ) \begin{cases}x=x_0+at=x_0+\cfrac{a}{\sqrt{a^2+b^2}}\cdot \sqrt{a^2+b^2}t \\y=y_0+bt=y_0+\cfrac{b}{\sqrt{a^2+b^2}}\cdot \sqrt{a^2+b^2}t\end{cases}(t为参数) x=x0+at=x0+a2+b2 aa2+b2 ty=y0+bt=y0+a2+b2 ba2+b2 t(t为参数)

再令 a 2 + b 2 t = m \sqrt{a^2+b^2}t=m a2+b2 t=m,则得到 { x = x 0 + c o s θ m y = y 0 + s i n θ m ( m 为参数 ) \begin{cases}x=x_0+cos\theta m\\y=y_0+sin\theta m\end{cases}(m为参数) {x=x0+cosθmy=y0+sinθm(m为参数),这才是标准形式;

此时的参数 m m m的几何意义才是定点到动点的有向线段的数量。

举例,将非标准形式 { x = − 2 − 2 t y = 3 + 2 t \left\{\begin{array}{l}{x=-2-\sqrt{2}t}\\{y=3+\sqrt{2}t}\end{array}\right. {x=22 ty=3+2 t ( t t t为参数), 变形为直线的参数方程的标准形式 { x = − 2 − 2 2 ( 2 t ) y = 3 + 2 2 ( 2 t ) \left\{\begin{array}{l}{x=-2-\cfrac{\sqrt{2}}{2}(2t)}\\{y=3+\cfrac{\sqrt{2}}{2}(2t)}\end{array}\right. x=222 (2t)y=3+22 (2t) ( 2 t 2t 2t为参数)

案例分析

【北师大选修教材4-4 P 53 P_{_{53}} P53 A A A组第 8 8 8 题】 求直线 { x = − 3 2 t y = 2 + t 2 , \left\{\begin{array}{l}x=-\cfrac{\sqrt{3}}{2}t\\y=2+\cfrac{t}{2}\end{array}\right., x=23 ty=2+2t, ( t t t 为参数) 被曲线 y 2 − 3 x 2 = 0 y^{2}-3x^{2}=0 y23x2=0 截得的线段长.

解析:将直线的参数方程 { x = − 3 2 t y = 2 + t 2 \left\{\begin{array}{l}x=-\cfrac{\sqrt{3}}{2} t\\y=2+\cfrac{t}{2}\end{array}\right. x=23 ty=2+2t ( t t t 为参数)代人曲线方程 y 2 − 3 x 2 = 0 y^{2}-3 x^{2}=0 y23x2=0

t 2 − t − 2 = 0 t^{2}-t-2=0 t2t2=0,解得 t 1 = 2 t_{1}=2 t1=2 t 2 = − 1 t_{2}=-1 t2=1

由参数的儿何意义知,截得的线段长为 ∣ t 1 − t 2 ∣ = ∣ 2 − ( − 1 ) ∣ = 3 |t_1-t_2|=|2-(-1)|=3 t1t2=∣2(1)=3.

【2019届凤中高三理科月考1第22题】在平面直角坐标系 x o y xoy xoy中,直线 l l l的参数方程为 { x = 2 + t y = 1 + 2 t \left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right. {x=2+ty=1+2t( t t t为参数),以原点为极点,以 x x x轴的非负半轴为极轴建立极坐标系, ⊙ C \odot C C的极坐标方程为 ρ 2 \rho^2 ρ2 − 4 ρ ⋅ sin ⁡ θ − 12 = 0 -4\rho\cdot\sin\theta-12=0 4ρsinθ12=0

(1)、 求 ⊙ C \odot C C的参数方程;

分析:将 ρ 2 = x 2 + y 2 \rho^2=x^2+y^2 ρ2=x2+y2 y = ρ ⋅ s i n θ y=\rho\cdot sin\theta y=ρsinθ,代入 ⊙ C \odot C C的极坐标方程 ρ 2 − 4 ρ s i n θ − 12 = 0 \rho^2-4\rho sin\theta-12=0 ρ24ρsinθ12=0

得到 ⊙ C \odot C C的直角坐标方程为 x 2 + y 2 − 4 y − 12 = 0 x^2+y^2-4y-12=0 x2+y24y12=0,即 x 2 + ( y − 2 ) 2 = 16 = 4 2 x^2+(y-2)^2=16=4^2 x2+(y2)2=16=42

⊙ C \odot C C的参数方程为 { x = 4 c o s θ y = 2 + 4 s i n θ \left\{\begin{array}{l}{x=4cos\theta}\\{y=2+4sin\theta}\end{array}\right. {x=4cosθy=2+4sinθ ( θ \theta θ为参数, θ ∈ [ 0 , 2 π ) \theta\in [0,2\pi) θ[02π))。

(2)、求直线 l l l ⊙ C \odot C C截得的弦长。

【法1】几何方法,利用 R t Δ Rt\Delta RtΔ求解,将直线 l l l的参数方程消参,得到其普通方程为 2 x − y − 3 = 0 2x-y-3=0 2xy3=0

则圆心 ( 0 , 2 ) (0,2) (02)到直线的距离为 d = ∣ − 2 − 3 ∣ 2 2 + 1 2 = 5 d=\cfrac{|-2-3|}{\sqrt{2^2+1^2}}=\sqrt{5} d=22+12 23∣=5

则直线 l l l ⊙ C \odot C C截得的弦长为 2 r 2 − d 2 = 2 4 2 − ( 5 ) 2 = 2 11 2\sqrt{r^2-d^2}=2\sqrt{4^2-(\sqrt{5})^2}=2\sqrt{11} 2r2d2 =242(5 )2 =211

【法2】弦长公式,设直线和圆的交点为 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A(x_1,y_1),B(x_2,y_2) A(x1y1)B(x2y2)

联立得到方程组, { 2 x − y − 3 = 0 x 2 + y 2 − 4 y − 12 = 0 \left\{\begin{array}{l}{2x-y-3=0}\\{x^2+y^2-4y-12=0}\end{array}\right. {2xy3=0x2+y24y12=0

消去 y y y得到, x 2 + ( 2 x − 3 ) 2 − 4 ( 2 x − 3 ) − 12 = 0 x^2+(2x-3)^2-4(2x-3)-12=0 x2+(2x3)24(2x3)12=0,整理得到, 5 x 2 − 20 x + 9 = 0 5x^2-20x+9=0 5x220x+9=0

由韦达定理得到, x 1 + x 2 = 4 x_1+x_2=4 x1+x2=4 x 1 x 2 = 9 5 x_1x_2=\cfrac{9}{5} x1x2=59

由弦长公式得到, ∣ A B ∣ = 1 + k 2 ∣ x 1 − x 2 ∣ |AB|=\sqrt{1+k^2}|x_1-x_2| AB=1+k2 x1x2 = 1 + 2 2 ( x 1 + x 2 ) 2 − 4 x 1 x 2 =\sqrt{1+2^2}\sqrt{(x_1+x_2)^2-4x_1x_2} =1+22 (x1+x2)24x1x2

= 5 16 − 36 5 = 2 11 =\sqrt{5}\sqrt{16-\cfrac{36}{5}}=2\sqrt{11} =5 16536 =211

【法3】利用直线的参数方程求解,需要先判断参数方程是否为标准形式;若不是,还需要转化为标准形式。

直线 l l l的参数方程为 { x = 2 + t y = 1 + 2 t ( t 为参数 ) \left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right.(t为参数) {x=2+ty=1+2t(t为参数)

(此时千万要注意,弦长 ∣ A B ∣ ≠ ∣ t 1 − t 2 ∣ |AB|\neq |t_1-t_2| AB=t1t2,原因是这个参数方程不是标准形式的)

将其做如下的转化,

{ x = 2 + 1 5 ⋅ 5 t y = 1 + 2 5 ⋅ 5 t ( t 为参数 ) \left\{\begin{array}{l}{x=2+\cfrac{1}{\sqrt{5}}\cdot \sqrt{5}t}\\{y=1+\cfrac{2}{\sqrt{5}}\cdot \sqrt{5}t}\end{array}\right.(t为参数) x=2+5 15 ty=1+5 25 t(t为参数)

5 t = m \sqrt{5}t=m 5 t=m,则其参数方程的标准形式为

{ x = 2 + 1 5 ⋅ m y = 1 + 2 5 ⋅ m ( m 为参数 ) \left\{\begin{array}{l}{x=2+\cfrac{1}{\sqrt{5}}\cdot m}\\{y=1+\cfrac{2}{\sqrt{5}}\cdot m}\end{array}\right.(m为参数) x=2+5 1my=1+5 2m(m为参数)

[此时参数 m m m的几何意义才是动点到定点的距离的数量,千万要注意,即弦长 ∣ A B ∣ = ∣ m 1 − m 2 ∣ = 1 2 + 2 2 ∣ t 1 − t 2 ∣ |AB|=|m_1-m_2|=\sqrt{1^2+2^2}|t_1-t_2| AB=m1m2=12+22 t1t2]

将直线 l l l的参数方程的标准形式代入圆的普通方程得到,

( 2 + 1 5 m ) 2 + ( 1 + 2 5 m ) 2 − 4 ( 1 + 2 5 m ) − 12 = 0 (2+\cfrac{1}{\sqrt{5}}m)^2+(1+\cfrac{2}{\sqrt{5}}m)^2-4(1+\cfrac{2}{\sqrt{5}}m)-12=0 (2+5 1m)2+(1+5 2m)24(1+5 2m)12=0

整理为 m 2 − 11 = 0 m^2-11=0 m211=0,令直线和圆的两个交点 A , B A,B AB分别对应的参数为 m 1 , m 2 m_1,m_2 m1m2

m 1 + m 2 = 0 m_1+m_2=0 m1+m2=0 m 1 m 2 = − 11 m_1m_2=-11 m1m2=11

此时弦长 ∣ A B ∣ = ∣ m 1 − m 2 ∣ = ( m 1 + m 2 ) 2 − 4 m 1 m 2 = 4 × 11 = 2 11 |AB|=|m_1-m_2|=\sqrt{(m_1+m_2)^2-4m_1m_2}=\sqrt{4\times 11}=2\sqrt{11} AB=m1m2=(m1+m2)24m1m2 =4×11 =211

或者简单求解如下:

将直线 l l l的参数方程 { x = 2 + t y = 1 + 2 t ( t 为参数 ) \left\{\begin{array}{l}{x=2+t}\\{y=1+2t}\end{array}\right.(t为参数) {x=2+ty=1+2t(t为参数),代入圆的普通方程 x 2 + ( y − 2 ) 2 = 4 2 x^2+(y-2)^2=4^2 x2+(y2)2=42中,

得到 ( 2 + t ) 2 + ( 2 t − 1 ) 2 = 4 2 (2+t)^2+(2t-1)^2=4^2 (2+t)2+(2t1)2=42,整理得到 5 t 2 − 11 = 0 5t^2-11=0 5t211=0

解得 t 1 = − 11 5 t_1=-\cfrac{\sqrt{11}}{\sqrt{5}} t1=5 11 t 2 = 11 5 t_2=\cfrac{\sqrt{11}}{\sqrt{5}} t2=5 11 ,则 ∣ t 1 − t 2 ∣ = 2 11 5 |t_1-t_2|=\cfrac{2\sqrt{11}}{\sqrt{5}} t1t2=5 211

∣ A B ∣ = 1 2 + 2 2 ∣ t 1 − t 2 ∣ = 5 × 2 11 5 = 2 11 |AB|=\sqrt{1^2+2^2}|t_1-t_2|=\sqrt{5}\times \cfrac{2\sqrt{11}}{\sqrt{5}}=2\sqrt{11} AB=12+22 t1t2=5 ×5 211 =211 ;

解后反思:

  • 非标准形式化为标准形式的思路

{ x = x 0 + a t = x 0 + a a 2 + b 2 ⋅ a 2 + b 2 t y = y 0 + b t = y 0 + b a 2 + b 2 ⋅ a 2 + b 2 t ( t 为参数 ) \begin{cases}x=x_0+at=x_0+\cfrac{a}{\sqrt{a^2+b^2}}\cdot \sqrt{a^2+b^2}t \\y=y_0+bt=y_0+\cfrac{b}{\sqrt{a^2+b^2}}\cdot \sqrt{a^2+b^2}t\end{cases}(t为参数) x=x0+at=x0+a2+b2 aa2+b2 ty=y0+bt=y0+a2+b2 ba2+b2 t(t为参数)

再令 a 2 + b 2 t = m \sqrt{a^2+b^2}t=m a2+b2 t=m,则得到 { x = x 0 + c o s θ m y = y 0 + s i n θ m ( m 为参数 ) \begin{cases}x=x_0+cos\theta m\\y=y_0+sin\theta m\end{cases}(m为参数) {x=x0+cosθmy=y0+sinθm(m为参数),这才是标准形式;

此时的参数 m m m的几何意义才是定点到动点的有向线段的数量。

【2021届高三文数三轮模拟检测题】已知极坐标系中,曲线 C C C 的极坐标方程为 ρ = r ( r > 4 ) \rho=r(r>4) ρ=r(r>4),以极点为原点,极轴为 x x x 轴的非负半轴,建立平面直角坐标系 x O y xOy xOy ,直线 l l l 的参数方程为 { x = 4 + t y = t \left\{\begin{array}{l}x=4+t\\y=t\end{array}\right. {x=4+ty=t ( t t t 为参数) .

(1). 求曲线 C C C 的参数方程以及直线 l l l 的极坐标方程.

解析:由 ρ = r \rho=r ρ=r,得到 ρ 2 = r 2 \rho^2=r^2 ρ2=r2,则其普通方程为 x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2

则其参数方程为 { x = r cos ⁡ θ y = r sin ⁡ θ \left\{\begin{array}{l}x=r\cos\theta\\y=r\sin\theta\end{array}\right. {x=rcosθy=rsinθ ( θ \theta θ 为参数) .

直线 l l l 的参数方程消参后得到, x − y = 4 x-y=4 xy=4,将 x = ρ cos ⁡ θ x=\rho\cos\theta x=ρcosθ y = ρ sin ⁡ θ y=\rho\sin\theta y=ρsinθ代入

得到 ρ cos ⁡ θ − ρ sin ⁡ θ = 4 \rho\cos\theta-\rho\sin\theta=4 ρcosθρsinθ=4,整理得到 ρ cos ⁡ ( θ + π 4 ) = 2 2 \rho\cos(\theta+\cfrac{\pi}{4})=2\sqrt{2} ρcos(θ+4π)=22

即直线 l l l 的极坐标方程为 ρ cos ⁡ ( θ + π 4 ) = 2 2 \rho\cos(\theta+\cfrac{\pi}{4})=2\sqrt{2} ρcos(θ+4π)=22 .

(2). 若点 M ( 4 , 0 ) M(4,0) M(4,0),直线 l l l 与曲线 C C C 交于 P P P Q Q Q 两点,且 1 ∣ M P ∣ − 1 ∣ M Q ∣ = 2 \cfrac{1}{|MP|}-\cfrac{1}{|MQ|}=\sqrt{2} MP1MQ1=2 ,求 r r r 的值.

解析:将 直线 l l l 的参数方程化为标准形式, { x = 4 + 2 2 n y = 2 2 n \left\{\begin{array}{l}x=4+\cfrac{\sqrt{2}}{2}n\\y=\cfrac{\sqrt{2}}{2}n\end{array}\right. x=4+22 ny=22 n ( n n n 为参数,且 n = 2 t n=\sqrt{2}t n=2 t) .

将其代入曲线 C C C 的普通方程 x 2 + y 2 = r 2 x^2+y^2=r^2 x2+y2=r2中 ,整理得到 n 2 + 4 2 n + 16 − r 2 = 0 n^2+4\sqrt{2}n+16-r^2=0 n2+42 n+16r2=0

由于 r > 4 r>4 r>4,故 Δ = ( 4 2 ) 2 − 4 ( 16 − r 2 ) > 0 \Delta=(4\sqrt{2})^2-4(16-r^2)>0 Δ=(42 )24(16r2)>0

设点 P P P Q Q Q 对应的参数分别为 n 1 n_1 n1 n 2 n_2 n2,则由韦达定理可得,

n 1 + n 2 = − 4 2 < 0 n_1+n_2=-4\sqrt{2}<0 n1+n2=42 <0 n 1 n 2 = 16 − r 2 < 0 n_1n_2=16-r^2<0 n1n2=16r2<0,由于 1 ∣ M P ∣ − 1 ∣ M Q ∣ = 2 \cfrac{1}{|MP|}-\cfrac{1}{|MQ|}=\sqrt{2} MP1MQ1=2

∣ M P ∣ < ∣ M Q ∣ |MP|<|MQ| MP<MQ,即 ∣ M P ∣ = ∣ n 1 ∣ = n 1 > 0 |MP|=|n_1|=n_1>0 MP=n1=n1>0 ∣ M Q ∣ = ∣ n 2 ∣ = n 2 < 0 |MQ|=|n_2|=n_2<0 MQ=n2=n2<0

1 ∣ M P ∣ − 1 ∣ M Q ∣ = ∣ M Q ∣ − ∣ M P ∣ ∣ M P ∣ ∣ M Q ∣ = − n 2 − n 1 ∣ n 1 n 2 ∣ \cfrac{1}{|MP|}-\cfrac{1}{|MQ|}=\cfrac{|MQ|-|MP|}{|MP||MQ|}=\cfrac{-n_2-n_1}{|n_1n_2|} MP1MQ1=MP∣∣MQMQMP=n1n2n2n1

= − ( n 1 + n 2 ) r 2 − 16 = 4 2 r 2 − 16 = 2 =\cfrac{-(n_1+n_2)}{r^2-16}=\cfrac{4\sqrt{2}}{r^2-16}=\sqrt{2} =r216(n1+n2)=r21642 =2

解得, r = 2 5 r=2\sqrt{5} r=25 (舍去负值),故 r = 2 5 r=2\sqrt{5} r=25 .

  • 12
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值