常见的建系类型汇总

前言

如果没有笛卡尔平面直角坐标系,那么涉及平面向量的问题只能用基向量的方法[形的角度]求解,不能用代数方法[数的角度]计算;同理如果没有空间直角坐标系的介入,立体几何中的问题也就只能从形的角度思考,而不能用代数方法[数的角度]来计算;所以建系的目的主要是想把有关形的问题,通过代数的方法计算解决;

本博文旨在总结立体几何中常见几何体的建系方法和类型,比如正四面体中、正三棱柱中、四棱锥等中的建系方法,坐标计算方法等,便于学习。而且我们应该知道,当建立的坐标系不同时,计算的难度是不一样的。

建平直系

  • 平面问题中若涉及平面向量的计算问题,常可以建立平面直角坐标系;

【2017河北武邑中学一模,文11】在 R t △ A B C Rt\triangle ABC RtABC中, C A = C B = 3 CA=CB=3 CA=CB=3 M M M N N N是斜边 A B AB AB上的两个动点, M N MN MN = = = 2 \sqrt{2} 2 ,则 C M → ⋅ C N → \overrightarrow{CM}\cdot \overrightarrow{CN} CM CN 的取值范围是【】

$A.[2,\cfrac{5}{2}]$ $B.[2,4]$ $C.[3,6]$ $D.[4,6]$

分析:求向量的内积的取值范围,应该想到用内积的坐标运算,本题目难点是一般想不到主动建系,由形的运算转化为数的运算。

解:如图所示,以点 C C C为坐标原点,分别以 C B 、 C A CB、CA CBCA所在的直线为 x 、 y x、y xy轴建立如同所示的坐标系,则 C ( 0 , 0 ) C(0,0) C(00) A ( 0 , 3 ) A(0,3) A(03) B ( 3 , 0 ) B(3 ,0) B(30),设点 N N N的横坐标为 x x x,则由等腰直角三角形可知,点 N N N的纵坐标为 3 − x 3-x 3x,即点 N ( x , 3 − x ) N(x,3-x) N(x3x)

又由 M N = 2 MN=\sqrt{2} MN=2 ,计算可知点 M ( x − 1 , 4 − x ) M(x-1,4-x) M(x14x),则 C M → = ( x − 1 , 4 − x ) \overrightarrow{CM}=(x-1,4-x) CM =(x14x) C N → = ( x , 3 − x ) \overrightarrow{CN}=(x,3-x) CN =(x3x)

由于点 M , N M,N M,N是动点,取两个极限位置研究 x x x的取值范围,

当点 M M M位于点 A A A时, x x x取到最小值 1 1 1,当点 N N N位于点 B B B时, x x x取到最大值 3 3 3,即 1 ≤ x ≤ 3 1\leq x\leq 3 1x3

C M → ⋅ C N → = f ( x ) = ( x − 1 , 4 − x ) ⋅ ( x , 3 − x ) \overrightarrow{CM}\cdot \overrightarrow{CN}=f(x)=(x-1,4-x)\cdot (x,3-x) CM CN =f(x)=(x14x)(x3x)

= x ( x − 1 ) + ( 4 − x ) ( 3 − x ) = 2 ( x − 2 ) 2 + 4 =x(x-1)+(4-x)(3-x)=2(x-2)^2+4 =x(x1)+(4x)(3x)=2(x2)2+4 x ∈ [ 1 , 3 ] x\in [1,3] x[13]

x = 2 x=2 x=2时, f ( x ) m i n = f ( 2 ) = 4 f(x)_{min}=f(2)=4 f(x)min=f(2)=4,当 x = 1 x=1 x=1 x = 3 x=3 x=3时, f ( x ) m a x = f ( 1 ) = f ( 3 ) = 6 f(x)_{max}=f(1)=f(3)=6 f(x)max=f(1)=f(3)=6

f ( x ) ∈ [ 4 , 6 ] f(x)\in [4,6] f(x)[46]。故选 D D D

【解后反思】对于以图形为背景的向量数量积运算的题目,只需把握图形的特征,建立适当的平面直角坐标系,写出相应点的坐标即可求解。

【2019届高三理科数学三轮模拟试题】如图,已知两点 A A A B B B在单位圆上, ∠ y O B = 6 0 ∘ \angle yOB=60^{\circ} yOB=60 ∠ x O A = 3 0 ∘ \angle xOA=30^{\circ} xOA=30,则 ∣ 2 O A → + 3 O B → ∣ |2\overrightarrow{OA}+3\overrightarrow{OB}| ∣2OA +3OB =___________。

法1:向量法,由题目可知, ∠ A O B = 12 0 ∘ \angle AOB=120^{\circ} AOB=120 ∣ O A → ∣ = ∣ O B → ∣ = 1 |\overrightarrow{OA}|=|\overrightarrow{OB}|=1 OA =OB =1

∣ 2 O A → + 3 O B → ∣ = ∣ 2 O A → + 3 O B → ∣ 2 |2\overrightarrow{OA}+3\overrightarrow{OB}|=\sqrt{|2\overrightarrow{OA}+3\overrightarrow{OB}|^2} ∣2OA +3OB =∣2OA +3OB 2

= 4 ∣ O A → ∣ 2 + 9 ∣ O B → ∣ 2 + 2 × 2 × 3 × O A → ⋅ O B → =\sqrt{4|\overrightarrow{OA}|^2+9|\overrightarrow{OB}|^2+2\times 2\times 3\times \overrightarrow{OA}\cdot \overrightarrow{OB}} =4∣OA 2+9∣OB 2+2×2×3×OA OB

= 4 + 9 + 2 × 2 × 3 × 1 × 1 × ( − 1 2 ) = 7 =\sqrt{4+9+2\times 2\times 3\times 1\times 1\times (-\cfrac{1}{2})}=7 =4+9+2×2×3×1×1×(21) =7,故 ∣ 2 O A → + 3 O B → ∣ = 7 |2\overrightarrow{OA}+3\overrightarrow{OB}|=\sqrt{7} ∣2OA +3OB =7

法2:坐标法,已知 A ( 3 2 , 1 2 ) A(\cfrac{\sqrt{3}}{2},\cfrac{1}{2}) A(23 21) B ( − 3 2 , 1 2 ) B(-\cfrac{\sqrt{3}}{2},\cfrac{1}{2}) B(23 21),则 O A → = ( 3 2 , 1 2 ) \overrightarrow{OA}=(\cfrac{\sqrt{3}}{2},\cfrac{1}{2}) OA =(23 21)

O B → = ( − 3 2 , 1 2 ) \overrightarrow{OB}=(-\cfrac{\sqrt{3}}{2},\cfrac{1}{2}) OB =(23 21),则 2 O A → + 3 O B → = ( − 3 2 , 5 2 ) 2\overrightarrow{OA}+3\overrightarrow{OB}=(-\cfrac{\sqrt{3}}{2},\cfrac{5}{2}) 2OA +3OB =(23 25)

∣ 2 O A → + 3 O B → ∣ = ( − 3 2 ) 2 + ( 5 2 ) 2 = 7 |2\overrightarrow{OA}+3\overrightarrow{OB}|=\sqrt{(-\cfrac{\sqrt{3}}{2})^2+(\cfrac{5}{2})^2}=\sqrt{7} ∣2OA +3OB =(23 )2+(25)2 =7

法3:解三角形法,由向量的平行四边形法则可知,所求的模长即 △ O C D \triangle OCD OCD中的边长 ∣ O C ∣ |OC| OC,由已知 ∣ O D ∣ = 3 ∣ O B ∣ = 3 |OD|=3|OB|=3 OD=3∣OB=3 ∣ C D ∣ = 2 ∣ O A ∣ = 2 |CD|=2|OA|=2 CD=2∣OA=2 ∠ O D C = 6 0 ∘ \angle ODC=60^{\circ} ODC=60

由余弦定理可知 ∣ 2 O A → + 3 O B → ∣ 2 = ∣ O C ∣ 2 = 2 2 + 3 2 − 2 × 2 × 3 × c o s 6 0 ∘ = 7 |2\overrightarrow{OA}+3\overrightarrow{OB}|^2=|OC|^2=2^2+3^2-2\times2\times 3\times cos60^{\circ}=7 ∣2OA +3OB 2=OC2=22+322×2×3×cos60=7

∣ 2 O A → + 3 O B → ∣ = 7 |2\overrightarrow{OA}+3\overrightarrow{OB}|=\sqrt{7} ∣2OA +3OB =7

【2019届高三理科数学二轮用题】在矩形 A B C D ABCD ABCD中, A B = 2 AB=2 AB=2 A D = 4 AD=4 AD=4 A C AC AC B D BD BD相交于点 O O O,过点 A A A A E ⊥ B D AE\perp BD AEBD E E E,则 A E → ⋅ A C → \overrightarrow{AE}\cdot \overrightarrow{AC} AE AC =【】

$A.\cfrac{8}{5}$ $B.\cfrac{16}{5}$ $C.\cfrac{32}{5}$ $D.8$

法1:从形的角度思考,采用坐标法求解;以点 A A A为坐标原点建立如图所示的直角坐标系,

则可知 A ( 0 , 0 ) A(0,0) A(00) B ( 0 , − 2 ) B(0,-2) B(02) C ( 4 , − 2 ) C(4,-2) C(42) D ( 4 , 0 ) D(4,0) D(40),设 E ( x , y ) E(x,y) E(xy)

则由 k A E ⋅ k B D = − 1 k_{AE}\cdot k_{BD}=-1 kAEkBD=1,可得 y = − 2 x y=-2x y=2x①,又直线 B D : 2 y = x − 4 BD:2y=x-4 BD2y=x4②,

联立①②可得, x = 4 5 x=\cfrac{4}{5} x=54 y = − 8 5 y=-\cfrac{8}{5} y=58

A E → ⋅ A C → = ( 4 5 , − 8 5 ) ⋅ ( 4 , − 2 ) = 32 5 \overrightarrow{AE}\cdot \overrightarrow{AC}=(\cfrac{4}{5},-\cfrac{8}{5})\cdot (4,-2)=\cfrac{32}{5} AE AC =(5458)(42)=532,故选 C C C.

法2:本题目是否还可以用基向量法,以 A B → \overrightarrow{AB} AB A D → \overrightarrow{AD} AD 为基向量来表示其他向量,待思考;

建空间系

  • 正四面体中的建系,建立空间直角坐标系;

如图,正四面体 P − A B C P-ABC PABC中, D D D E E E分别是 A B AB AB P C PC PC的中点,则直线 A E AE AE P D PD PD所成角的余弦值是多少?

法1:空间向量法,如图所示, P F ⊥ PF\perp PF A B C ABC ABC F F F Δ A B C \Delta ABC ΔABC的中心,

以点 D D D为坐标原点,以 D F DF DF D B DB DB以及与 F P FP FP平行的直线分别为 x x x y y y z z z轴建立如图所示的空间直角坐标系,

令正四面体的棱长为 2 2 2,则得到以下点的空间坐标

D ( 0 , 0 , 0 ) D(0,0,0) D(000) A ( 0 , − 1 , 0 ) A(0,-1,0) A(010) B ( 0 , 1 , 0 ) B(0,1,0) B(010)

C ( − 3 , 0 , 0 ) C(-\sqrt{3},0,0) C(3 00) P ( − 3 3 , 0 , 2 6 3 ) P(-\cfrac{\sqrt{3}}{3},0,\cfrac{2\sqrt{6}}{3}) P(33 0326 ) E ( − 2 3 3 , 0 , 6 3 ) E(-\cfrac{2\sqrt{3}}{3},0,\cfrac{\sqrt{6}}{3}) E(323 036 )

则有 P D → = ( 3 3 , 0 , − 2 6 3 ) \overrightarrow{PD}=(\cfrac{\sqrt{3}}{3},0,-\cfrac{2\sqrt{6}}{3}) PD =(33 0326 ) A E → = ( − 2 3 3 , 1 , 6 3 ) \overrightarrow{AE}=(-\cfrac{2\sqrt{3}}{3},1,\cfrac{\sqrt{6}}{3}) AE =(323 136 )

令异面直线 P D PD PD A E AE AE的夹角为 θ \theta θ,则有 c o s θ cos\theta cosθ

= ∣ 3 3 ⋅ ( − 2 3 3 ) + 0 ⋅ 1 + ( − 2 6 3 ⋅ 6 3 ) ∣ ( 3 3 ) 2 + ( − 2 6 3 ) 2 ⋅ ( − 2 3 3 ) 2 + 1 2 + ( 6 3 ) 2 = 2 3 =\cfrac{|\cfrac{\sqrt{3}}{3}\cdot (-\cfrac{2\sqrt{3}}{3})+0\cdot 1+(-\cfrac{2\sqrt{6}}{3}\cdot \cfrac{\sqrt{6}}{3})|}{\sqrt{(\cfrac{\sqrt{3}}{3})^2+(-\cfrac{2\sqrt{6}}{3})^2}\cdot \sqrt{(-\cfrac{2\sqrt{3}}{3})^2+1^2+(\cfrac{\sqrt{6}}{3})^2}}=\cfrac{2}{3} =(33 )2+(326 )2 (323 )2+12+(36 )2 33 (323 )+01+(326 36 )=32

说明:向量的夹角范围为 [ 0 , π ] [0,\pi] [0π],两异面直线的夹角范围 [ 0 , π 2 ] [0,\cfrac{\pi}{2}] [02π]

法2:立体几何法,先作再证后算。

思路:异面直线所成的角,一般是经过平移,使其相交,构建三角形来计算。

过点 A A A A M / / B C AM//BC AM//BC,过点 B B B B M / / A C BM//AC BM//AC A M AM AM于点 M M M

F F F H H H G G G分别是线段 P B PB PB A M AM AM B D BD BD的中点,连接 H F HF HF F G FG FG H G HG HG

则有 E F      = / / A H EF\;\;{}_{=}^{//}AH EF=//AH,则 A E / / F H AE//FH AE//FH,又 P D / / F G PD//FG PD//FG,故 ∠ H F G \angle HFG HFG为两条异面直线所成的角。

设正四面体的棱长为 2 2 2,则 A E = F H = P D = 3 AE=FH=PD=\sqrt{3} AE=FH=PD=3 F G = 3 2 FG=\cfrac{\sqrt{3}}{2} FG=23

又在 Δ A H G \Delta AHG ΔAHG中, A H = 1 AH=1 AH=1 A G = 3 2 AG=\cfrac{3}{2} AG=23 ∠ H A G = 6 0 ∘ \angle HAG=60^\circ HAG=60

由余弦定理可知, H G = 7 2 HG=\cfrac{\sqrt{7}}{2} HG=27

Δ H F G \Delta HFG ΔHFG中, H F = 3 HF=\sqrt{3} HF=3 F G = 3 2 FG=\cfrac{\sqrt{3}}{2} FG=23 H G = 7 2 HG=\cfrac{\sqrt{7}}{2} HG=27

由余弦定理可知 c o s ∠ H F G = 2 3 cos\angle HFG=\cfrac{2}{3} cosHFG=32

  • 四棱锥中的建系,建立空间直角坐标系;

【四棱锥中的建系】【2017凤翔中学第三次月考理科第19题】如图所示,四棱锥 P − A B C D P-ABCD PABCD中,底面 A B C D ABCD ABCD是个边长为2的正方形,侧棱 P A ⊥ PA\perp PA底面 A B C D ABCD ABCD,且 P A = 2 PA=2 PA=2 Q Q Q P A PA PA的中点.

(1)证明: B D ⊥ BD\perp BD平面 P A C PAC PAC ;暂略

(2)求二面角 C − B D − Q C-BD-Q CBDQ的余弦值。

分析:有题可知, A B 、 A P 、 A D AB、AP、AD ABAPAD两两垂直,以 A A A为坐标原点,分别以 A B 、 A D 、 A P AB、AD、AP ABADAP所在直线为 x , y , z x,y,z xyz轴建立空间直角坐标系,如图所示。

则点 B ( 2 , 0 , 0 ) B(2,0,0) B(200) C ( 2 , 2 , 0 ) C(2,2,0) C(220) D ( 0 , 2 , 0 ) D(0,2,0) D(020) Q ( 0 , 0 , 1 ) Q(0,0,1) Q(001)

所以 B D → = ( − 2 , 2 , 0 ) \overrightarrow{BD}=(-2,2,0) BD =(220) B Q → = ( − 2 , 0 , 1 ) \overrightarrow{BQ}=(-2,0,1) BQ =(201)

设平面 B D Q BDQ BDQ的法向量为 m ⃗ = ( x , y , z ) \vec{m}=(x,y,z) m =(xyz),则有

{ m ⃗ ⊥ B D → m ⃗ ⊥ B Q → \begin{cases}\vec{m}\perp\overrightarrow{BD}\\\vec{m}\perp\overrightarrow{BQ}\end{cases} {m BD m BQ ⟹ { m ⃗ ⋅ B D → = 0 m ⃗ ⋅ B Q → = 0 \Longrightarrow \begin{cases}\vec{m}\cdot\overrightarrow{BD}=0\\\vec{m}\cdot\overrightarrow{BQ}=0\end{cases} {m BD =0m BQ =0

{ − 2 x + 2 y = 0 − 2 x + z = 0 \begin{cases}-2x+2y=0\\-2x+z=0\end{cases} {2x+2y=02x+z=0,可以取 m ⃗ = ( 1 , 1 , 2 ) \vec{m}=(1,1,2) m =(112)

平面 B D C BDC BDC的法向量为 n ⃗ = ( 0 , 0 , 1 ) \vec{n}=(0,0,1) n =(001)

设二面角 C − B D − Q C-BD-Q CBDQ θ \theta θ,由图可知, θ \theta θ为钝角,则有

c o s θ = − ∣ c o s < m ⃗ , n ⃗ > ∣ = − m ⃗ ⋅ n ⃗ ∣ m ⃗ ∣ ∣ n ⃗ ∣ = − 2 6 = − 6 3 cos\theta=-|cos<\vec{m},\vec{n}>|=-\cfrac{\vec{m}\cdot\vec{n}}{|\vec{m}||\vec{n}|}=-\cfrac{2}{\sqrt{6}}=-\cfrac{\sqrt{6}}{3} cosθ=cos<m n >=m ∣∣n m n =6 2=36

所以二面角 C − B D − Q C-BD-Q CBDQ的余弦值为 − 6 3 -\cfrac{\sqrt{6}}{3} 36

  • 正三棱柱中的建系,建立空间直角坐标系;

【正三棱柱中的建系】【2019届宝鸡市高三理科数学质检Ⅰ第10题】已知正三棱柱 A B C − A 1 B 1 C 1 ABC-A_1B_1C_1 ABCA1B1C1中, A B = A A 1 = 2 AB=AA_1=2 AB=AA1=2,则异面直线 A B 1 AB_1 AB1 C A 1 CA_1 CA1所成角的余弦值为【】

$A.0$ $B.-\cfrac{1}{4}$ $C.\cfrac{1}{4}$ $D.\cfrac{1}{2}$

【法1】空间向量法,第一种建系方式;以点 A A A为坐标原点,以 A C AC AC A A 1 AA_1 AA1分别为 y y y z z z轴,以和 A C AC AC垂直的直线为 x x x轴,建立如图所示的空间直角坐标系,

A ( 0 , 0 , 0 ) A(0,0,0) A(000) B ( 3 , 1 , 0 ) B(\sqrt{3},1,0) B(3 10) A 1 ( 0 , 0 , 2 ) A_1(0,0,2) A1(002) B 1 ( 3 , 1 , 2 ) B_1(\sqrt{3},1,2) B1(3 12) C ( 0 , 2 , 0 ) C(0,2,0) C(020)

A B 1 → = ( 3 , 1 , 2 ) \overrightarrow{AB_1}=(\sqrt{3},1,2) AB1 =(3 12) A 1 C → = ( 0 , 2 , − 2 ) \overrightarrow{A_1C}=(0,2,-2) A1C =(022),且线线角的范围是 [ 0 , π 2 ] [0,\cfrac{\pi}{2}] [02π]

故所求角的余弦值为 ∣ c o s < A B 1 → , A 1 C → > ∣ = ∣ 1 × 2 + 2 × ( − 2 ) ∣ 8 × 8 = 1 4 |cos<\overrightarrow{AB_1},\overrightarrow{A_1C}>|=\cfrac{|1\times 2+2\times(-2)|}{\sqrt{8}\times\sqrt{8}}=\cfrac{1}{4} cos<AB1 A1C >=8 ×8 ∣1×2+2×(2)=41。故选 C C C

【法1】空间向量法,第二种建系方式;以 B N BN BN的中点为坐标原点建立如图所示的空间直角坐标系,

A ( 1 , 0 , 0 ) A(1,0,0) A(100) B ( 0 , 3 , 0 ) B(0,\sqrt{3},0) B(03 0) C ( − 1 , 0 , 0 ) C(-1,0,0) C(100) A 1 ( 1 , 0 , 2 ) A_1(1,0,2) A1(102) B 1 ( 0 , 3 , 2 ) B_1(0,\sqrt{3},2) B1(03 2) C 1 ( − 1 , 0 , 2 ) C_1(-1,0,2) C1(102)

A B 1 → = ( − 1 , 3 , 2 ) \overrightarrow{AB_1}=(-1,\sqrt{3},2) AB1 =(13 2) A 1 C → = ( − 2 , 0 , − 2 ) \overrightarrow{A_1C}=(-2,0,-2) A1C =(202),且线线角的范围是 [ 0 , π 2 ] [0,\cfrac{\pi}{2}] [02π]

故所求角的余弦值为 ∣ c o s < A B 1 → , A 1 C → > ∣ = ∣ − 1 × ( − 2 ) + 3 × 0 + 2 × ( − 2 ) ∣ 8 × 8 = 1 4 |cos<\overrightarrow{AB_1},\overrightarrow{A_1C}>|=\cfrac{|-1\times (-2)+\sqrt{3}\times 0+2\times(-2)|}{\sqrt{8}\times\sqrt{8}}=\cfrac{1}{4} cos<AB1 A1C >=8 ×8 1×(2)+3 ×0+2×(2)=41。故选 C C C

【法2】:立体几何法,补体平移法,将正三棱柱补体为一个底面为菱形的直四棱柱,连结 B 1 D B_1D B1D,则 B 1 D / / A 1 C B_1D//A_1C B1D//A1C

故异面直线 A B 1 AB_1 AB1 C A 1 CA_1 CA1所成角,即转化为共面直线 A B 1 AB_1 AB1 B 1 D B_1D B1D所成的角 ∠ A B 1 D \angle AB_1D AB1D,连结 A D AD AD

Δ A B 1 D \Delta AB_1D ΔAB1D中, A B = A A 1 = 2 AB=AA_1=2 AB=AA1=2,可得 A B 1 = B 1 D = 2 2 AB_1=B_1D=2\sqrt{2} AB1=B1D=22 A D = 2 3 AD=2\sqrt{3} AD=23

由余弦定理可知, c o s ∠ A B 1 D = ( 2 2 ) 2 + ( 2 2 ) 2 − ( 2 3 ) 2 2 × 2 2 × 2 3 = 1 4 cos\angle AB_1D=\cfrac{(2\sqrt{2})^2+(2\sqrt{2})^2-(2\sqrt{3})^2}{2\times 2\sqrt{2}\times 2\sqrt{3}}=\cfrac{1}{4} cosAB1D=2×22 ×23 (22 )2+(22 )2(23 )2=41

故所求为 1 4 \cfrac{1}{4} 41,故选 C C C

  • 三棱锥中的建系,建立空间直角坐标系;

【2018年全国卷Ⅰ第18题】如图,四边形 A B C D ABCD ABCD为正方形, E E E F F F分别为 A D AD AD B C BC BC的中点,以 D F DF DF为折痕把 △ D F C \triangle DFC DFC折起,使点 C C C到达点 P P P的位置,且 P F ⊥ B F PF\perp BF PFBF

(1).证明:平面 P E F ⊥ PEF\perp PEF平面 A B F D ABFD ABFD

证明:由已知可得, B F ⊥ P F BF\perp PF BFPF B F ⊥ E F BF\perp EF BFEF

P F ∩ E F = F PF\cap EF=F PFEF=F P F ⊆ PF\subseteq PF平面 P E F PEF PEF E F ⊆ EF\subseteq EF平面 P E F PEF PEF

所以 B F ⊥ BF\perp BF平面 P E F PEF PEF,又 B F ⊆ BF\subseteq BF平面 A B F D ABFD ABFD

所以平面 P E F ⊥ PEF\perp PEF平面 A B F D ABFD ABFD

(2).求 D P DP DP与平面 A B F D ABFD ABFD所成角的正弦值。

解:作 P H ⊥ E F PH\perp EF PHEF,垂足为 H H H,由(1)得, P H ⊥ PH\perp PH平面 A B F D ABFD ABFD,以 H H H为坐标原点, H F → \overrightarrow{HF} HF 的方向为 y y y轴正方向, ∣ B F → ∣ |\overrightarrow{BF}| BF 为单位长,建立如图所示的空间直角坐标系 H − x y z H-xyz Hxyz

由(1)得到, D E ⊥ P E DE\perp PE DEPE,又 D P = 2 DP=2 DP=2 D E = 1 DE=1 DE=1,所以 P E = 3 PE=\sqrt{3} PE=3

P F = 1 PF=1 PF=1 E F = 2 EF=2 EF=2,所以 P E ⊥ P F PE\perp PF PEPF,可得 P H = 3 2 PH=\cfrac{\sqrt{3}}{2} PH=23 E H = 3 2 EH=\cfrac{3}{2} EH=23

H ( 0 , 0 , 0 ) H(0,0,0) H(000) P ( 0 , 0 , 3 2 ) P(0,0,\cfrac{\sqrt{3}}{2}) P(0023 ) D ( − 1 , − 3 2 , 0 ) D(-1,-\cfrac{3}{2},0) D(1230)

D P → = ( 1 , 3 2 , 3 2 ) \overrightarrow{DP}=(1,\cfrac{3}{2},\cfrac{\sqrt{3}}{2}) DP =(12323 ) H P → = ( 0 , 0 , 3 2 ) \overrightarrow{HP}=(0,0,\cfrac{\sqrt{3}}{2}) HP =(0023 )为平面 A B F D ABFD ABFD的法向量,

D P DP DP与平面 A B F D ABFD ABFD所成角为 θ \theta θ,则 s i n θ = ∣ c o s < H P → , D P → > ∣ = ∣ H P → ⋅ D P → ∣ H P → ∣ ∣ D P → ∣ ∣ = 3 4 3 = 3 4 sin\theta=|cos<\overrightarrow{HP},\overrightarrow{DP}>|=|\cfrac{\overrightarrow{HP}\cdot \overrightarrow{DP}}{|\overrightarrow{HP}||\overrightarrow{DP}|}|=\cfrac{\frac{3}{4}}{\sqrt{3}}=\cfrac{\sqrt{3}}{4} sinθ=cos<HP DP >=HP ∣∣DP HP DP =3 43=43

所以 D P DP DP与平面 A B F D ABFD ABFD所成角的正弦值为 3 4 \cfrac{\sqrt{3}}{4} 43

  • 长方体中的建系,建立空间直角坐标系;

【长方体中建系】【2019年高考数学试卷理科新课标Ⅱ第17题】如图,长方体 A B C D − A 1 B 1 C 1 D 1 ABCD-A_1B_1C_1D_1 ABCDA1B1C1D1的底面 A B C D ABCD ABCD是正方形,点 E E E在棱 A A 1 AA_1 AA1上, B E ⊥ E C 1 BE\perp EC_1 BEEC1.

(1).证明: B E ⊥ BE\perp BE平面 E B 1 C 1 EB_1C_1 EB1C1

分析:需要证明线面垂直,往往先要转化为证明线线垂直;

解析:由已知 B 1 C 1 ⊥ B_1C_1\perp B1C1平面 A B B 1 A 1 ABB_1A_1 ABB1A1 B E ⊂ BE\subset BE平面 A B B 1 A 1 ABB_1A_1 ABB1A1,故 B 1 C 1 ⊥ B E B_1C_1\perp BE B1C1BE

B E ⊥ E C 1 BE\perp EC_1 BEEC1 B 1 C 1 ⊂ B_1C_1\subset B1C1平面 E B 1 C 1 EB_1C_1 EB1C1 E C 1 ⊂ EC_1\subset EC1平面 E B 1 C 1 EB_1C_1 EB1C1 B 1 C 1 ∩ E C 1 = C 1 B_1C_1\cap EC_1=C_1 B1C1EC1=C1

B E ⊥ BE\perp BE平面 E B 1 C 1 EB_1C_1 EB1C1

(2).若 A E = A 1 E AE=A_1E AE=A1E,求二面角 B − E C − C 1 B-EC-C_1 BECC1的正弦值;

解析:由(1)知道 ∠ B E B 1 = 9 0 ∘ \angle BEB_1=90^{\circ} BEB1=90,由题设可知 R t △ A B E R t △ A 1 B 1 E Rt\triangle ABE Rt\triangle A_1B_1E RtABERtA1B1E,所以 ∠ A E B = 4 5 ∘ \angle AEB=45^{\circ} AEB=45,故 A E = A B AE=AB AE=AB A A 1 = 2 A B AA_1=2AB AA1=2AB

D D D为坐标原点, D A → \overrightarrow{DA} DA 的方向为 x x x轴的正方向, ∣ D A → ∣ |\overrightarrow{DA}| DA 为单位长,建立如图所示的空间直角坐标系 D − x y z D-xyz Dxyz

C ( 0 , 1 , 0 ) C(0,1,0) C(010) B ( 1 , 1 , 0 ) B(1,1,0) B(110) C 1 ( 0 , 1 , 2 ) C_1(0,1,2) C1(012) E ( 1 , 0 , 1 ) E(1,0,1) E(101) C B → = ( 1 , 0 , 0 ) \overrightarrow{CB}=(1,0,0) CB =(100) C E → = ( 1 , − 1 , 1 ) \overrightarrow{CE}=(1,-1,1) CE =(111) C C 1 → = ( 0 , 0 , 2 ) \overrightarrow{CC_1}=(0,0,2) CC1 =(002)

设平面 E B C EBC EBC的法向量 n ⃗ = ( x , y , z ) \vec{n}=(x,y,z) n =(xyz)

{ C B → ⋅ n ⃗ = 0 C E → ⋅ n ⃗ = 0 \left\{\begin{array}{l}{\overrightarrow{CB}\cdot \vec{n}=0}\\{\overrightarrow{CE}\cdot \vec{n}=0}\end{array}\right. {CB n =0CE n =0,即 { x = 0 x − y + z = 0 \left\{\begin{array}{l}{x=0}\\{x-y+z=0}\end{array}\right. {x=0xy+z=0,所以可以赋值取 n ⃗ = ( 0 , − 1 , − 1 ) \vec{n}=(0,-1,-1) n =(011)

设平面 E C C 1 ECC_1 ECC1的法向量 m ⃗ = ( x , y , z ) \vec{m}=(x,y,z) m =(xyz)

{ C C 1 → ⋅ m ⃗ = 0 C E → ⋅ m ⃗ = 0 \left\{\begin{array}{l}{\overrightarrow{CC_1}\cdot \vec{m}=0}\\{\overrightarrow{CE}\cdot \vec{m}=0}\end{array}\right. {CC1 m =0CE m =0,即 { 2 z = 0 x − y + z = 0 \left\{\begin{array}{l}{2z=0}\\{x-y+z=0}\end{array}\right. {2z=0xy+z=0,所以可以赋值取 m ⃗ = ( 1 , 1 , 0 ) \vec{m}=(1,1,0) m =(110)

于是, c o s < n ⃗ , m ⃗ > = n ⃗ ⋅ m ⃗ ∣ n ⃗ ∣ ∣ m ⃗ ∣ = − 1 2 cos<\vec{n},\vec{m}>=\cfrac{\vec{n}\cdot\vec{m}}{|\vec{n}||\vec{m}|}=-\cfrac{1}{2} cos<n m >=n ∣∣m n m =21

< n ⃗ , m ⃗ > = 12 0 ∘ <\vec{n},\vec{m}>=120^{\circ} <n m >=120,所以,二面角 B − E C − C 1 B-EC-C_1 BECC1的正弦值为 3 2 \cfrac{\sqrt{3}}{2} 23

解后反思:当然,本题目同样可用点 C C C做为坐标原点来建立坐标系。

  • 建系不难,难点在点的坐标确定,新考向;

【四棱锥中建系】如图,在四棱锥 P − A B C D P-ABCD PABCD中, P D ⊥ PD\perp PD平面 A B C D ABCD ABCD,四边形 A B C D ABCD ABCD是菱形,且 A C AC AC B D BD BD交于点 O O O E E E P B PB PB上任意一点。

(1)求证:平面 E A C ⊥ EAC\perp EAC 平面 B P D BPD BPD;

分析:由于 P D ⊥ PD\perp PD平面 A B C D ABCD ABCD,所以 P D ⊥ A C PD\perp AC PDAC

由于四边形 A B C D ABCD ABCD是菱形,所以 B D ⊥ A C BD\perp AC BDAC

又由于 B D ∩ P D = D BD\cap PD=D BDPD=D,所以 A C ⊥ AC\perp AC 平面 P B D PBD PBD

又由于 A C ⊆ AC\subseteq AC 平面 A E C AEC AEC,所以平面 E A C ⊥ EAC\perp EAC 平面 B P D BPD BPD;

(2)若 E E E P B PB PB的中点, A C = 2 AC=2 AC=2 B D = 2 3 BD=2\sqrt{3} BD=23 ,且二面角 A − P B − D A-PB-D APBD的余弦值为 21 7 \cfrac{\sqrt{21}}{7} 721 ,求四棱锥 P − A B C D P-ABCD PABCD的体积;

分析:连接 O E OE OE,在 △ P B D \triangle PBD PBD中, E O / / P D EO//PD EO//PD,所以 E O ⊥ EO\perp EO平面 A B C D ABCD ABCD,分别以 O A OA OA O B OB OB O E OE OE所在直线为 x x x轴, y y y轴, z z z轴建立如图所示的空间直角坐标系,设 P D = t PD=t PD=t,则 A ( 1 , 0 , 0 ) A(1,0,0) A(100) B ( 0 , 3 , 0 ) B(0,\sqrt{3},0) B(03 0) C ( − 1 , 0 , 0 ) C(-1,0,0) C(100) E ( 0 , 0 , t 2 ) E(0,0,\cfrac{t}{2}) E(002t) P ( 0 , − 3 , t ) P(0,-\sqrt{3},t) P(03 t)

设平面 P A B PAB PAB的一个法向量为 n ⃗ = ( x , y , z ) \vec{n}=(x,y,z) n =(xyz)

{ n ⃗ ⋅ A B → = − x + 3 y = 0 n ⃗ ⋅ A P → = − x − 3 y + t z = 0 \left\{\begin{array}{l}{\vec{n}\cdot \overrightarrow{AB}=-x+\sqrt{3}y=0}\\{\vec{n}\cdot \overrightarrow{AP}=-x-\sqrt{3}y+tz=0}\end{array}\right. {n AB =x+3 y=0n AP =x3 y+tz=0 y = 1 y=1 y=1,得到 n ⃗ = ( 3 , 1 , 2 3 t ) \vec{n}=(\sqrt{3},1,\cfrac{2\sqrt{3}}{t}) n =(3 1t23 )

平面 P B D PBD PBD的法向量 m ⃗ = ( 1 , 0 , 0 ) \vec{m}=(1,0,0) m =(100)

由于二面角 A − P B − D A-PB-D APBD的余弦值为 21 7 \cfrac{\sqrt{21}}{7} 721 ,则 ∣ c o s < m ⃗ , n ⃗ > ∣ = 3 4 + 12 t 2 = 21 7 |cos<\vec{m},\vec{n}>|=\cfrac{\sqrt{3}}{\sqrt{4+\frac{12}{t^2}}}=\cfrac{\sqrt{21}}{7} cos<m n >=4+t212 3 =721

解得 t = 2 t=2 t=2 t = − 2 t=-2 t=2(舍去),故四棱锥 P − A B C D P-ABCD PABCD的体积为 V = 1 3 × 1 2 × 2 × 2 3 × 2 = 4 3 3 V=\cfrac{1}{3}\times \cfrac{1}{2}\times 2\times 2\sqrt{3}\times 2=\cfrac{4\sqrt{3}}{3} V=31×21×2×23 ×2=343

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值