前情概要
按理说,在高三数学的学习中,我们不断的出错,不停的改错,也在不停的进步,更为重要的是,我们的数学素养要跟着提升才是 . 比如通过函数的学习,我们应该有这样的共识,题目一旦给定函数的图象,我们从图象就能完整解读这个函数的所有性质,换言之,这是将函数的性质以形的形式给出来了;那么题目一旦给定解析式,我们从解析式也能完整解读这个函数的所有性质[只是没有从形上研究那么直接和直观,费点事我们也一定能研究出来],换言之,这是将函数的性质以数的形式给出来了;但我们往往想不到从解析式入手分析研究函数的性质 .
典例剖析
⚠️ 借助函数的解析式给出函数的定义域、单调性、奇偶性等
No.1、【榆林模拟】函数 f ( x ) f(x) f(x) = = = ln 1 + x 1 − x \ln\cfrac{1+x}{1-x} ln1−x1+x + + + sin x \sin x sinx ,则不等式 f ( a − 2 ) + f ( a 2 − 4 ) < 0 f(a-2)+f(a^2-4)<0 f(a−2)+f(a2−4)<0的解集是【 \qquad 】
A . ( 3 , 2 ) A.(\sqrt{3},2) A.(3,2) B . ( − 3 , 2 ) B.(-3,2) B.(−3,2) C . ( 1 , 2 ) C.(1,2) C.(1,2) D . ( 3 , 5 ) D.(\sqrt{3},\sqrt{5}) D.(3,5)
分析:这类题目往往需要取得符号 f f f,而在此之前,需要转化为 f ( M ) < f ( N ) f(M)<f(N) f(M)<f(N) 或 f ( M ) > f ( N ) f(M)>f(N) f(M)>f(N) 的形式,然后利用定义域和单调性去掉对应法则符号,就转化为了一般的不等式组了。
解析:先求定义域,令 1 + x 1 − x > 0 \cfrac{1+x}{1-x}>0 1−x1+x>0,解得定义域 ( − 1 , 1 ) (-1,1) (−1,1);
再求奇偶性,由于 f ( − x ) = l n 1 − x 1 + x − s i n x f(-x)=ln\cfrac{1-x}{1+x}-sinx f(−x)=ln1+x1−x−sinx, f ( x ) = l n 1 + x 1 − x + s i n x f(x)=ln\cfrac{1+x}{1-x}+sinx f(x)=ln1−x1+x+sinx,
所以 f ( − x ) + f ( x ) = 0 f(-x)+f(x)=0 f(−x)+f(x)=0,故函数为奇函数;最后分析单调性,
法一,基本函数法,令 g ( x ) = l n 1 + x 1 − x = l n ( − 1 − 2 x − 1 ) g(x)=ln\cfrac{1+x}{1-x}=ln(-1-\cfrac{2}{x-1}) g(x)=ln1−x1+x=ln(−1−x−12),由于 u = − 1 − 2 x − 1 u=-1-\cfrac{2}{x-1} u=−1−x−12为增函数,
所以函数 g ( x ) g(x) g(x)为增函数,故函数 f ( x ) = g ( x ) + s i n x f(x)=g(x)+sinx f(x)=g(x)+sinx为 ( − 1 , 1 ) (-1,1) (−1,1)上的增函数,
法二,导数法, f ′ ( x ) = 2 1 − x 2 + c o s x > 0 f'(x)=\cfrac{2}{1-x^2}+cosx>0 f′(x)=1−x22+cosx>0,故函数 f ( x ) f(x) f(x)为 ( − 1 , 1 ) (-1,1) (−1,1)上的增函数,
到此需要的性质基本备齐了[定义域,单调性,奇偶性],
由 f ( a − 2 ) + f ( a 2 − 4 ) < 0 f(a-2)+f(a^2-4)<0 f(a−2)+f(a2−4)<0,
变换得到 f ( a − 2 ) < − f ( a 2 − 4 ) = f ( 4 − a 2 ) f(a-2)<-f(a^2-4)=f(4-a^2) f(a−2)<−f(a2−4)=f(4−a2),
由定义域和单调性得到以下不等式组: { − 1 < a − 2 < 1 − 1 < a 2 − 4 < 1 a − 2 < 4 −