对数的运算困惑

难点总结

学生在对数运算中的难点分析:

一、不理解对数,不会用对数公式或错用对数公式

①对数 l o g 2 3 log_23 log23和指数幂 2 3 2^3 23一样,也就是个实数而已,所以其也会有加减乘除乘方开方等运算;

比如 2 2 + l o g 2 3 = 2 2 ⋅ 2 l o g 2 3 = 4 ⋅ 3 = 12 2^{2+log_23}=2^2\cdot 2^{log_23}=4\cdot 3=12 22+log23=222log23=43=12

②准确记忆对数的运算公式和法则,

【相关复习】指数幂的运算1

a b = N a^b=N ab=N(指数式) ⟺ \Longleftrightarrow b = l o g a N b=log_aN b=logaN(对数式);

对数的性质: l o g a 1 = 0 log_a1=0 loga1=0 l o g a a = 1 log_aa=1 logaa=1

对数的运算法则:

l o g a M N = l o g a M + l o g a N log_aMN=log_aM+log_aN logaMN=logaM+logaN注意字母的取值, a > 0 a>0 a>0 a ≠ 1 a\neq1 a=1 M > 0 M>0 M>0 N > 0 N>0 N>0,后者学生在做变换时容易忘记;

l o g a M N = l o g a M − l o g a N log_a\cfrac{M}{N}=log_aM-log_aN logaNM=logaMlogaN l o g a M n = n l o g a M log_aM^n=nlog_aM logaMn=nlogaM

对数恒等式: a l o g a N = N a^{log_aN}=N alogaN=N

对数换底公式: l o g a b = l o g c b l o g c a ( a > 0 , a ≠ 1 ; c > 0 , c ≠ 1 ; b > 0 ) log_ab=\cfrac{log_cb}{log_ca}(a>0,a\neq 1;c>0,c\neq 1;b>0) logab=logcalogcb(a>0,a=1;c>0,c=1;b>0)

常用公式1: l o g a b ⋅ l o g b c ⋅ l o g c d = l o g a d log_ab\cdot log_bc\cdot log_cd= log_ad logablogbclogcd=logad l o g a b ⋅ l o g b c ⋅ l o g c a = l o g a a = 1 log_ab\cdot log_bc\cdot log_ca= log_aa=1 logablogbclogca=logaa=1

l o g a b ⋅ l o g b a = 1 log_ab\cdot log_ba=1 logablogba=1 l n e = 1 lne=1 lne=1 l g 2 + l g 5 = l g 10 = 1 lg2+lg5=lg10=1 lg2+lg5=lg10=1

常用公式2: l o g a m b n = n m l o g a b ( m , n ∈ R , a > 0 , a ≠ 1 , b > 0 ) log_{a^m}{b^n}=\cfrac{n}{m}log_ab(m,n\in R,a>0,a\neq 1,b>0) logambn=mnlogab(mnRa>0a=1b>0)

③正用、逆用、变用公式;

l o g a M + l o g a N = l o g a M N log_aM+log_aN=log_aMN logaM+logaN=logaMN l o g a M − l o g a N = l o g a M N log_aM-log_aN=log_a\cfrac{M}{N} logaMlogaN=logaNM

n l o g a M = l o g a M n nlog_aM=log_aM^n nlogaM=logaMn n m l o g a b = l o g a m b n \cfrac{n}{m}log_ab=log_{a^m}{b^n} mnlogab=logambn

④错用公式: l o g a ( M + N ) = l o g a M + l o g a N log_a(M+N)=log_aM+log_aN loga(M+N)=logaM+logaN l o g a ( M ⋅ N ) = l o g a M ⋅ l o g a N log_a(M\cdot N)=log_aM\cdot log_aN loga(MN)=logaMlogaN

二、知道对数的公式和运算法则,但不会灵活运用,对公式中的字母的内涵不理解;

化简 ( l o g 2 4 ) l o g 2 3 = 3 (log_24)^{log_23}=3 (log24)log23=3 l o g 2      l o g 2 16 = l o g 2 4 = 2 log_2^{\;\;log_216}=log_24=2 log2log216=log24=2

化简 l o g 2 25 ⋅ l o g 3 4 ⋅ l o g 5 9 = 8 log_225\cdot log_34\cdot log_59=8 log225log34log59=8;提示:换底公式

化简 l g 3 2 + l g 3 5 + 3 l g 2 l g 5 lg^32+lg^35+3lg2lg5 lg32+lg35+3lg2lg5

分析:原式 = ( l g 2 + l g 5 ) ( l g 2 2 − l g 2 l g 5 + l g 2 5 ) + 3 l g 2 l g 5 =(lg2+lg5)(lg^22-lg2lg5+lg^25)+3lg2lg5 =(lg2+lg5)(lg22lg2lg5+lg25)+3lg2lg5

= l g 2 2 − l g 2 l g 5 + l g 2 5 + 3 l g 2 l g 5 =lg^22-lg2lg5+lg^25+3lg2lg5 =lg22lg2lg5+lg25+3lg2lg5

= l g 2 2 + 2 l g 2 l g 5 + l g 2 5 = ( l g 2 + l g 5 ) 2 = 1 =lg^22+2lg2lg5+lg^25=(lg2+lg5)^2=1 =lg22+2lg2lg5+lg25=(lg2+lg5)2=1

( l o g 4 3 + l o g 8 3 ) ( l o g 3 2 + l o g 9 2 ) (log_43+log_83)(log_32+log_92) (log43+log83)(log32+log92)

法1:原式 = ( l g 3 l g 4 + l g 3 l g 8 ) ( l g 2 l g 3 + l g 2 l g 9 ) =(\cfrac{lg3}{lg4}+\cfrac{lg3}{lg8})(\cfrac{lg2}{lg3}+\cfrac{lg2}{lg9}) =(lg4lg3+lg8lg3)(lg3lg2+lg9lg2)

= l g 3 l g 4 ⋅ l g 2 l g 3 + l g 3 l g 4 ⋅ l g 2 l g 9 + l g 3 l g 8 ⋅ l g 2 l g 3 + l g 3 l g 8 ⋅ l g 2 l g 9 =\cfrac{lg3}{lg4}\cdot \cfrac{lg2}{lg3}+\cfrac{lg3}{lg4}\cdot \cfrac{lg2}{lg9}+\cfrac{lg3}{lg8}\cdot \cfrac{lg2}{lg3}+\cfrac{lg3}{lg8}\cdot \cfrac{lg2}{lg9} =lg4lg3lg3lg2+lg4lg3lg9lg2+lg8lg3lg3lg2+lg8lg3lg9lg2

= 1 2 + 1 4 + 1 3 + 1 6 = 5 4 =\cfrac{1}{2}+\cfrac{1}{4}+\cfrac{1}{3}+\cfrac{1}{6}=\cfrac{5}{4} =21+41+31+61=45

法2:原式 = ( 1 2 l o g 2 3 + 1 3 l o g 2 3 ) ( l o g 3 2 + 1 2 l o g 3 2 ) =(\cfrac{1}{2}log_23+\cfrac{1}{3}log_23)(log_32+\cfrac{1}{2}log_32) =(21log23+31log23)(log32+21log32)

= ( 1 2 + 1 3 ) ⋅ l o g 2 3 ⋅ ( 1 + 1 2 ) l o g 3 2 = 5 4 =(\cfrac{1}{2}+\cfrac{1}{3})\cdot log_23\cdot (1+\cfrac{1}{2})log_32=\cfrac{5}{4} =(21+31)log23(1+21)log32=45

法3:原式 = ( 1 l o g 3 4 + 1 l o g 3 8 ) ( 1 l o g 2 3 + 1 l o g 2 9 ) =(\cfrac{1}{log_34}+\cfrac{1}{log_38})(\cfrac{1}{log_23}+\cfrac{1}{log_29}) =(log341+log381)(log231+log291)

= ( 1 2 l o g 3 2 + 1 3 l o g 3 2 ) ( 1 l o g 2 3 + 1 2 l o g 2 3 ) =(\cfrac{1}{2log_32}+\cfrac{1}{3log_32})(\cfrac{1}{log_23}+\cfrac{1}{2log_23}) =(2log321+3log321)(log231+2log231)

= 5 6 l o g 3 2 ⋅ 3 2 l o g 2 3 = 5 4 =\cfrac{5}{6log_32}\cdot \cfrac{3}{2log_23}=\cfrac{5}{4} =6log3252log233=45

三、只会单独运用单个的对数公式,不会组合应用几个对数公式;

:计算 5 l o g 25 ( l g 2 2 + l g 5 2 ) 5^{log_{25}(lg^22+lg\frac{5}{2})} 5log25(lg22+lg25)

分析:本题目分三个步骤完成:

第一步,先计算 5 5 5的指数位置的对数的真数的值,

l g 2 2 + l g 5 2 = ( l g 2 ) 2 − l g 2 + l g 5 lg^22+lg\cfrac{5}{2}=(lg2)^2-lg2+lg5 lg22+lg25=(lg2)2lg2+lg5

= l g 2 ( l g 2 − 1 ) + l g 5 = − l g 2 l g 5 + l g 5 =lg2(lg2-1)+lg5=-lg2lg5+lg5 =lg2(lg21)+lg5=lg2lg5+lg5

= l g 5 ( 1 − l g 2 ) = ( l g 5 ) 2 =lg5(1-lg2)=(lg5)^2 =lg5(1lg2)=(lg5)2

这样,原题目就转化为 5 l o g 25 ( l g 5 ) 2 5^{log_{25}(lg5)^2} 5log25(lg5)2

第二步,再计算 5 5 5的指数位置的对数的值,

l o g 25 ( l g 5 ) 2 = l o g 5 2 ( l g 5 ) 2 = 2 2 ⋅ l o g 5 l g 5 = l o g 5 l g 5 log_{25}(lg5)^2=log_{5^2}(lg5)^2=\cfrac{2}{2}\cdot log_5lg5=log_5lg5 log25(lg5)2=log52(lg5)2=22log5lg5=log5lg5

这样,原题目再次转化为 5 l o g 5 l g 5 5^{log_5lg5} 5log5lg5

第三步,利用对数恒等式求值,

5 l o g 5 l g 5 = l g 5 5^{log_5lg5}=lg5 5log5lg5=lg5

5 l o g 25 ( l g 2 2 + l g 5 2 ) = l g 5 5^{log_{25}(lg^22+lg\frac{5}{2})}=lg5 5log25(lg22+lg25)=lg5

四、涉及指数、对数的综合运算

2 − l o g 2 3 = 2 l o g 2 ( 3 − 1 ) = 3 − 1 = 1 3 2^{-log_23}=2^{log_2(3^{-1})}=3^{-1}=\cfrac{1}{3} 2log23=2log2(31)=31=31

4 1 2 l o g 2 10 = ( 4 1 2 ) l o g 2 10 = 2 l o g 2 10 = 10 4^{\frac{1}{2}log_210}=(4^{\frac{1}{2}})^{log_210}=2^{log_210}=10 421log210=(421)log210=2log210=10

7 − l o g 7 1 2 = ( 1 2 ) − 1 = 2 7^{-log_7\frac{1}{2}}=(\cfrac{1}{2})^{-1}=2 7log721=(21)1=2

4 1 2 + l o g 2 10 = 4 1 2 ⋅ 4 l o g 2 10 = 2 ⋅ 2 l o g 2 10 2 = 200 4^{\frac{1}{2}+log_210}=4^{\frac{1}{2}}\cdot 4^{log_210}=2\cdot 2^{log_2{10}^2}=200 421+log210=4214log210=22log2102=200

1 2 l g 32 49 − 4 3 l g 8 + l g 245 \cfrac{1}{2}lg\cfrac{32}{49}-\cfrac{4}{3}lg\sqrt{8}+lg\sqrt{245} 21lg493234lg8 +lg245

= 1 2 ( l g 32 − l g 49 ) − 4 3 l g 8 1 2 + l g 24 5 1 2 =\cfrac{1}{2}(lg32-lg49)-\cfrac{4}{3}lg8^{\frac{1}{2}}+lg245^{\frac{1}{2}} =21(lg32lg49)34lg821+lg24521

= 1 2 ( l g 2 5 − l g 7 2 ) − 4 3 ⋅ 1 2 l g 2 3 + 1 2 l g ( 49 × 5 ) =\cfrac{1}{2}(lg2^5-lg7^2)-\cfrac{4}{3}\cdot \cfrac{1}{2}lg2^3+\cfrac{1}{2}lg(49\times5) =21(lg25lg72)3421lg23+21lg(49×5)

= 1 2 ( 5 l g 2 − 2 l g 7 ) − 2 3 × 3 l g 2 + 1 2 ( 2 l g 7 + l g 5 ) =\cfrac{1}{2}(5lg2-2lg7)-\cfrac{2}{3}\times 3lg2+\cfrac{1}{2}(2lg7+lg5) =21(5lg22lg7)32×3lg2+21(2lg7+lg5)

= 5 2 l g 2 − l g 7 − 2 l g 2 + 1 2 l g 5 + l g 7 =\cfrac{5}{2}lg2-lg7-2lg2+\cfrac{1}{2}lg5+lg7 =25lg2lg72lg2+21lg5+lg7

= 1 2 l g 2 + 1 2 l g 5 =\cfrac{1}{2}lg2+\cfrac{1}{2}lg5 =21lg2+21lg5

= 1 2 ( l g 2 + l g 5 ) = 1 2 =\cfrac{1}{2}(lg2+lg5)=\cfrac{1}{2} =21(lg2+lg5)=21

五、不懂对数运算的策略

求值: 5 l g 30 ⋅ ( 1 3 ) l g 0.5 5^{lg30}\cdot (\cfrac{1}{3})^{lg0.5} 5lg30(31)lg0.5

分析:设 5 l g 30 ⋅ ( 1 3 ) l g 0.5 = x 5^{lg30}\cdot (\cfrac{1}{3})^{lg0.5}=x 5lg30(31)lg0.5=x这一设元的意义非凡,没有设元之前,所给的只是个代数式,我们没法给它施加我们想要的运算;当设元之后,就将原来的代数式特殊化为了等式,这样我们就可以给两边施加想要的运算,比如给两边同时取对数,这一点在换底公式的证明中也有体现。,两边同时取对数,

得到 l g x = l g [ 5 l g 30 ⋅ ( 1 3 ) l g 0.5 ] lgx=lg[5^{lg30}\cdot (\cfrac{1}{3})^{lg0.5}] lgx=lg[5lg30(31)lg0.5]

l g x = l g 30 ⋅ l g 5 + l g 0.5 ⋅ l g 1 3 lgx=lg30\cdot lg5+lg0.5\cdot lg\cfrac{1}{3} lgx=lg30lg5+lg0.5lg31

l g x = ( l g 3 + 1 ) ⋅ l g 5 + ( − l g 2 ) ⋅ ( − l g 3 ) lgx =(lg3+1)\cdot lg5+(-lg2)\cdot (-lg3) lgx=(lg3+1)lg5+(lg2)(lg3)

l g x = l g 3 ⋅ l g 5 + l g 5 + l g 2 ⋅ l g 3 lgx=lg3\cdot lg5+lg5+lg2\cdot lg3 lgx=lg3lg5+lg5+lg2lg3

l g x = l g 3 ( l g 2 + l g 5 ) + l g 5 lgx=lg3(lg2+lg5)+lg5 lgx=lg3(lg2+lg5)+lg5

l g x = l g 3 + l g 5 = l g 15 lgx=lg3+lg5=lg15 lgx=lg3+lg5=lg15

x = 15 x=15 x=15

求值:KaTeX parse error: Got function '\mskip' with no arguments as superscript at position 24: …ath{\kern#1#3}{\̲m̲s̲k̲i̲p̲#1#2}\relax

原式=KaTeX parse error: Got function '\mskip' with no arguments as superscript at position 24: …ath{\kern#1#3}{\̲m̲s̲k̲i̲p̲#1#2}\relax

KaTeX parse error: Got function '\mskip' with no arguments as superscript at position 24: …ath{\kern#1#3}{\̲m̲s̲k̲i̲p̲#1#2}\relax

KaTeX parse error: Got function '\mskip' with no arguments as superscript at position 24: …ath{\kern#1#3}{\̲m̲s̲k̲i̲p̲#1#2}\relax

已知 a , b > 0 a,b>0 ab>0,且满足 2 + l o g 2 a = 3 + l o g 3 b = l o g 6 ( a + b ) 2+log_2a=3+log_3b=log_6(a+b) 2+log2a=3+log3b=log6(a+b),求 1 a + 1 b \cfrac{1}{a}+\cfrac{1}{b} a1+b1的值;

分析:引入正数因子 k k k

2 + l o g 2 a = 3 + l o g 3 b = l o g 6 ( a + b ) = k ( k > 0 ) 2+log_2a=3+log_3b=log_6(a+b)=k(k>0) 2+log2a=3+log3b=log6(a+b)=k(k>0)

则由 2 + l o g 2 a = l o g 2 4 a = k 2+log_2a=log_24a=k 2+log2a=log24a=k

得到 4 a = 2 k 4a=2^k 4a=2k,即 a = 2 k 2 2 = 2 k − 2 a=\cfrac{2^k}{2^2}=2^{k-2} a=222k=2k2

3 + l o g 3 b = l o g 3 27 b = k 3+log_3b=log_327b=k 3+log3b=log327b=k

得到 27 b = 3 k 27b=3^k 27b=3k,即 b = 3 k 3 3 = 3 k − 3 b=\cfrac{3^k}{3^3}=3^{k-3} b=333k=3k3

l o g 6 ( a + b ) = k log_6(a+b)=k log6(a+b)=k

得到 a + b = 6 k a+b=6^k a+b=6k

1 a + 1 b = a + b a b \cfrac{1}{a}+\cfrac{1}{b}=\cfrac{a+b}{ab} a1+b1=aba+b

= 6 k 2 k − 2 ⋅ 3 k − 3 =\cfrac{6^k}{2^{k-2}\cdot 3^{k-3}} =2k23k36k

= 2 k ⋅ 3 k 2 k ⋅ 2 − 2 ⋅ 3 k ⋅ 3 − 3 =\cfrac{2^k\cdot 3^k}{2^k\cdot 2^{-2}\cdot 3^k\cdot 3^{-3}} =2k223k332k3k

= 1 2 − 2 ⋅ 3 − 3 =\cfrac{1}{2^{-2}\cdot 3^{-3}} =22331

= 2 2 ⋅ 3 3 = 108 =2^2\cdot 3^3=108 =2233=108

六、虽然能做出对数题目,但不能理解题目的训练意图;

l g x lgx lgx l g y lgy lgy l g z lgz lgz l g ( x + y ) lg(x+y) lg(x+y) l g ( x − y ) ( x > y > 0 ) lg(x-y)(x>y>0) lg(xy)(x>y>0)表达下列对数式;

l g ( x y z ) = l g x + l g y + l g z lg(xyz)=lgx+lgy+lgz lg(xyz)=lgx+lgy+lgz

l g ( x 2 y 2 z − 3 ) = 2 l g x + 2 l g y − 3 l g z lg(x^2y^2z^{-3})=2lgx+2lgy-3lgz lg(x2y2z3)=2lgx+2lgy3lgz

l g x y x 2 − y 2 = l g x + l g y − l g ( x + y ) − l g ( x − y ) lg\cfrac{xy}{x^2-y^2}=lgx+lgy-lg(x+y)-lg(x-y) lgx2y2xy=lgx+lgylg(x+y)lg(xy)

l g [ y x ( x − y ) ] 3 = 3 l g y − l g x − l g ( x − y ) lg[\cfrac{y}{x(x-y)}]^3=3lgy-lgx-lg(x-y) lg[x(xy)y]3=3lgylgxlg(xy)

解对数方程: l o g 2 ( 9 x − 1 − 5 ) = l o g 2 ( 3 x − 1 − 2 ) + 2 log_2(9^{x-1}-5)=log_2(3^{x-1}-2)+2 log2(9x15)=log2(3x12)+2

分析:要使得原方程成立,必须先满足条件 9 x − 1 − 5 > 0 ① 9^{x-1}-5>0① 9x15>0① 3 x − 1 − 2 > 0 ② 3^{x-1}-2>0② 3x12>0②

在此前提下,原方程等价于 l o g 2 ( 9 x − 1 − 5 ) = l o g 2 4 ( 3 x − 1 − 2 ) log_2(9^{x-1}-5)=log_24(3^{x-1}-2) log2(9x15)=log24(3x12);

9 x − 1 − 5 = 4 ( 3 x − 1 − 2 ) 9^{x-1}-5=4(3^{x-1}-2) 9x15=4(3x12)

9 x − 1 − 4 ⋅ 3 x − 1 + 3 = 0 9^{x-1}-4\cdot 3^{x-1}+3=0 9x143x1+3=0

( 3 x − 1 ) 2 − 4 ⋅ 3 x − 1 + 3 = 0 (3^{x-1})^2-4\cdot 3^{x-1}+3=0 (3x1)243x1+3=0

3 x − 1 = 1 3^{x-1}=1 3x1=1,或者 3 x − 1 = 3 3^{x-1}=3 3x1=3

3 x − 1 = 1 3^{x-1}=1 3x1=1, 即 3 x − 1 = 3 0 3^{x-1}=3^0 3x1=30,解得 x = 1 x=1 x=1

3 x − 1 = 3 3^{x-1}=3 3x1=3, 即 3 x − 1 = 3 1 3^{x-1}=3^1 3x1=31,解得 x = 2 x=2 x=2

验证:将 x = 1 x=1 x=1 x = 2 x=2 x=2代入①②两式,舍去 x = 1 x=1 x=1,保留 x = 2 x=2 x=2

故方程的根为 x = 2 x=2 x=2

七、对数学公式的内涵和作用理解不到位

2 l o g 2 3 = 3 2^{log_23}=3 2log23=3,这样做的目的是为了化简;

3 = 2 l o g 2 3 3=2^{log_23} 3=2log23,这样做的目的是常数指数化,便于求解形如 2 x > 3 2^x>3 2x>3指数不等式,即 2 x > 3 = 2 l o g 2 3 2^x>3=2^{log_23} 2x>3=2log23

典例剖析

计算 ( 1 − l o g 6 3 ) 2 + l o g 6 2 ⋅ l o g 6 18 l o g 6 4 = 1 \cfrac{(1-log_63)^2+log_62\cdot log_618}{log_64}=1 log64(1log63)2+log62log618=1


  1. 正整数指数幂: a × a × ⋯ × a ⏟ n 个 = a n ( n ∈ N ) \underbrace{{a\times a\times \cdots\times a}}_{n个}=a^n(n\in N) n a×a××a=an(nN)

    负整数指数幂: a − n = 1 a n a^{-n}=\cfrac{1}{a^n} an=an1 a 0 = 1 ( a ≠ 0 ) a^0=1(a\neq 0) a0=1(a=0)

    正分数指数幂: a m n = a m n a^{\frac{m}{n}}=\sqrt[n]{a^m} anm=nam ;负分数指数幂: a − m n = 1 a m n a^{-\frac{m}{n}}=\cfrac{1}{\sqrt[n]{a^m}} anm=nam 1

    { 整数 } ∪ { 分数 } = { 有理数 } \{整数\}\cup\{分数\}=\{有理数\} {整数}{分数}={有理数} { 有理数 } ∪ { 无理数 } = { 实数 } \{有理数\}\cup\{无理数\}=\{实数\} {有理数}{无理数}={实数}

    指数的运算法则:( m , n ∈ R m,n\in R mnR),注意:字母 a 、 b a、b ab的内涵;

    公式: a m ⋅ a n = a m + n a^m\cdot a^n=a^{m+n} aman=am+n ( a m ) n = ( a n ) m = a m n (a^m)^n=(a^n)^m=a^{mn} (am)n=(an)m=amn ( a ⋅ b ) n = a n ⋅ b n (a\cdot b)^n=a^n\cdot b^n (ab)n=anbn

    注意逆用: a m + n = a m ⋅ a n a^{m+n}=a^m\cdot a^n am+n=aman a m n = ( a m ) n = ( a n ) m a^{mn}=(a^m)^n=(a^n)^m amn=(am)n=(an)m a n ⋅ b n = ( a ⋅ b ) n a^n\cdot b^n=(a\cdot b)^n anbn=(ab)n
    ↩︎

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海之恋2068

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值