求解素数的N种方法
一、质数和合数
质数:
质数又称**素数**。指在一个大于 1的自然数中,除了 1和此整数自身外,不能被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为质数。
最小的素数是 2, 它也是唯一的**偶素数**。
从小到大的素数依次排列为∶ 2,3,5,7,11,13,17……
合数:
比 1大但不是素数的数称为合数(0 和1 既非素数也非合数)
最小的合数是 4。
从小到大的合数依次排列为∶4,6,8,9,10,12,14……
特别注意:
判断质数跟合数的时候,一定要注意一些特殊值,例如0和1以及可能出现负数
二、最大公约数和最小公倍数
最大公约数也称为最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个约数。
例如∶求 12、16 的最大公约数
12的约数∶ 1、2、3、4、6、12
16的约数∶1、2、4、8
12、16的公约数∶ 1、2、4
其中最大的一个是 4,因此 12 与16 的最大公约数是4
辗转相除法
又名欧几里德算法,是求最大公约数的一种方法。
具体做法∶对于给定的两个数 m 和 n,若除数 n 不为 0,将 m除以 n 的余数和除数 n 构成新的一对数,继续上面的除法,直到除数n 等于 0,则这时的被除数 m 就是原来两个数的最大公约数。
最小公倍数
两个或多个整数公有的倍数叫做它们的公倍数,其中除 0 以外最小的一个公倍数就叫做这几个整数的最小公倍数。
例如∶求 6、8的最小公倍数
6的倍数∶ 6、12、18、24、30、……
8的倍数∶8、16、24、32、40、……
6、8的公倍数∶ 24、48、……
其中最小的一个是 24,因此 6与8的最小公倍数是 24
总结∶各数相乘,再除以它们的最大公约数即可得到最小公倍数。
例题1:编程求两个数的最大公约数
解题思路:调用自定义函数求两个自然数的最大公约数,完整代码如下
#include <bits/stdc++.h>
using namespace std;
int get_gcd(int m,int n)
{
int r;
while(n!=0)
{
r=m%n;
m=n;
n=r;
}
return m;
}
int main()
{
int m,n;
cin>>m>>n;
cout<<get_gcd(m,n);
return 0;
}
Copy
例题2:编程求两个数的最小公倍数
解题思路:最小公倍数=每个数相乘,再除以它们的最大公约数。调用自定义函数求两个自然数的最小公倍数,完整代码如下
#include <bits/stdc++.h>
using namespace std;
int get_gcd(int m,int n)
{
int r;
while(n!=0)
{
r=m%n;
m=n;
n=r;
}
return m;
}
int lcm(int m,int n)
{
return m*n/get_gcd(m,n);
}
int main()
{
int m,n;
cin>>m>>n;
cout<<lcm(m,n);
return 0;
}
Copy
注意事项:__gcd()函数在正式比赛中可能被禁用,因此尽量手写一个gcd函数。
三、互质数
两个或多个整数的公因数只有 1 的非零自然数。
例:12 与 17 是互质数;12 与 3 不是互质数
互质数特性:(1)最大公约数为 1;(2)最小公倍数为其乘积。
如何用 C++程序来判断两个数是否为互质数?
思路:判断最大公因数是否为 1。
四、质因数分解
概念:把一个合数分解成若干个质因数的乘积的形式,即求质因数的过程叫做质因数分解。
24=2*12=2*2*6=2*2*2*3
30=2*15=2*3*5
Copy
例题1:质因数分解(主题库1890)
已知正整数 n 是两个不同的质数的乘积,试求出较大的那个质数。
输入格式 :输入只有一行,包含一个正整数 n。
输出格式:输出只有一行,包含一个正整数 p,即较大的那个质数。
样例输入:
21
Copy
样例输出:
7
Copy
数据范围/约定
时间空间限制:1s, 256MB.
对于 60%的数据,6 ≤ n ≤ 10006≤n≤1000。
对于 100%的数据,6 ≤ n ≤ 2*10^96≤n≤2∗109。
解题思路:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n,i;
cin>>n;
for(i=2;i<=n-1;i++)
{
if(n%i==0)
{
cout<<n/i;
return 0;
}
}
return 0;
}
Copy
例题2:分解质因数(主题库1101)
分解质因数是小学数学中常见的问题,现在给定一个正整数N,请你编程序对N分解质因数,并将分解式输出来。
输入输出格式 :
输入:只有一个正整数N(N<=32767)。
输出:只有一行,就是N分解成质因子的连乘积的式子,并且要求按因子从小到大从左到右的格式输出。
样例输入:
24
Copy
样例输出:
24=2*2*2*3
Copy
解题思路:
#include<iostream>
using n