第二十二章:求解素数的N种方法

本文详细介绍了求解素数的多种方法,包括质数与合数的概念,最大公约数和最小公倍数的计算,以及辗转相除法和最小公倍数的算法实现。此外,还讲解了互质数的概念,并通过实例展示了质因数分解的解题思路。文章深入探讨了三种求解素数的方法:试除法、埃氏筛法和欧式筛法,分析了各自的时间复杂度,提供了代码示例,并给出了相关例题以帮助读者理解和应用这些方法。
摘要由CSDN通过智能技术生成

 求解素数的N种方法

一、质数和合数

质数:

质数又称**素数**。指在一个大于 1的自然数中,除了 1和此整数自身外,不能被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为质数。

最小的素数是 2, 它也是唯一的**偶素数**。

从小到大的素数依次排列为∶ 2,3,5,7,11,13,17……

合数:

比 1大但不是素数的数称为合数(0 和1 既非素数也非合数)

最小的合数是 4。

从小到大的合数依次排列为∶4,6,8,9,10,12,14……

特别注意:

判断质数跟合数的时候,一定要注意一些特殊值,例如0和1以及可能出现负数

二、最大公约数和最小公倍数

最大公约数也称为最大公因数、最大公因子,指两个或多个整数共有约数中最大的一个约数。

例如∶求 12、16 的最大公约数

12的约数∶ 1、2、3、4、6、12

16的约数∶1、2、4、8

12、16的公约数∶ 1、2、4

其中最大的一个是 4,因此 12 与16 的最大公约数是4

辗转相除法

又名欧几里德算法,是求最大公约数的一种方法。

具体做法∶对于给定的两个数 m 和 n,若除数 n 不为 0,将 m除以 n 的余数和除数 n 构成新的一对数,继续上面的除法,直到除数n 等于 0,则这时的被除数 m 就是原来两个数的最大公约数。

最小公倍数

两个或多个整数公有的倍数叫做它们的公倍数,其中除 0 以外最小的一个公倍数就叫做这几个整数的最小公倍数。

例如∶求 6、8的最小公倍数

6的倍数∶ 6、12、18、24、30、……

8的倍数∶8、16、24、32、40、……

6、8的公倍数∶ 24、48、……

其中最小的一个是 24,因此 6与8的最小公倍数是 24

总结∶各数相乘,再除以它们的最大公约数即可得到最小公倍数。

例题1:编程求两个数的最大公约数

解题思路:调用自定义函数求两个自然数的最大公约数,完整代码如下

#include <bits/stdc++.h>
using namespace std;
int get_gcd(int m,int n)
{
    int r;
    while(n!=0)
    {
        r=m%n;
        m=n;
        n=r;
    }
    return m;
 } 
int main()
{
    int m,n;
    cin>>m>>n;
    cout<<get_gcd(m,n);
    return 0;
}

Copy

例题2:编程求两个数的最小公倍数

解题思路:最小公倍数=每个数相乘,再除以它们的最大公约数。调用自定义函数求两个自然数的最小公倍数,完整代码如下

#include <bits/stdc++.h>
using namespace std;
int get_gcd(int m,int n)
{
    int r;
    while(n!=0)
    {
        r=m%n;
        m=n;
        n=r;
    }
    return m;
} 
int lcm(int m,int n)
{
    return m*n/get_gcd(m,n);
}
int main()
{
    int m,n;
    cin>>m>>n;
    cout<<lcm(m,n);
    return 0;
}

Copy

注意事项:__gcd()函数在正式比赛中可能被禁用,因此尽量手写一个gcd函数。

三、互质数

两个或多个整数的公因数只有 1 的非零自然数。

例:12 与 17 是互质数;12 与 3 不是互质数

互质数特性:(1)最大公约数为 1;(2)最小公倍数为其乘积。

如何用 C++程序来判断两个数是否为互质数?

思路:判断最大公因数是否为 1。

四、质因数分解

概念:把一个合数分解成若干个质因数的乘积的形式,即求质因数的过程叫做质因数分解。

24=2*12=2*2*6=2*2*2*3

30=2*15=2*3*5


Copy

例题1:质因数分解(主题库1890)

已知正整数 n 是两个不同的质数的乘积,试求出较大的那个质数。

输入格式 :输入只有一行,包含一个正整数 n。

输出格式:输出只有一行,包含一个正整数 p,即较大的那个质数。

样例输入:

21

Copy

样例输出:

7

Copy

数据范围/约定

时间空间限制:1s, 256MB.

对于 60%的数据,6 ≤ n ≤ 10006≤n≤1000。

对于 100%的数据,6 ≤ n ≤ 2*10^96≤n≤2∗109。

解题思路:

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int n,i;
    cin>>n;
    for(i=2;i<=n-1;i++)
    {
        if(n%i==0)
        {
            cout<<n/i;
            return 0;
        }
    }
    return 0;
}

Copy

例题2:分解质因数(主题库1101)

分解质因数是小学数学中常见的问题,现在给定一个正整数N,请你编程序对N分解质因数,并将分解式输出来。

输入输出格式 :

输入:只有一个正整数N(N<=32767)。

输出:只有一行,就是N分解成质因子的连乘积的式子,并且要求按因子从小到大从左到右的格式输出。

样例输入:

24

Copy

样例输出:

24=2*2*2*3

Copy

解题思路:

#include<iostream>
using n
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值