导读
加入我们,一起探索大模型应用的精彩世界,精通开源模型、掌握Prompt的巧妙运用、熟悉Agent、深入Langchain框架,Spring AI框架,逐步打造属于你的AI智能体。
大模型应用从入门到精通(一)选择开源大模型
大模型应用从入门到精通(二)大模型实操:部署和运行
大模型应用从入门到精通(三)云上部署:如何将大模型搬到云端
大模型应用从入门到精通(四)Langchain:大模型时代的Spring
大模型应用从入门到精通(五)Prompt Engineering:让模型理解你的意图
大模型应用从入门到精通(六)记忆的艺术:构建有记忆力的AI
大模型应用从入门到精通(七)Agent:大模型与世界的链接
大模型应用从入门到精通(八)智能信息小助手:基于大模型的实时信息整合系统
引言:为什么选择开源大模型?
开源大模型让每一个人都能参与到这次浪潮中
LLama2 率先开源,掀起了大模型开源的热潮,这让我们每个人都可以拥有自己的大模型。现在,不仅每个人都有机会构建自己的模型,还可以对这些模型进行微调,这让我们每个人都参能参与其中。在接下来的课程中,我们将详细讲解如何有效地利用这些开源资源,让每一个热爱技术的你,都能在这场浪潮中乘风破浪。
开源模型已经达到了ChatGPT3.5的水准
GPT3.5 Turbo是一个可以进行商业应用的级别,许多国外的商业产品底层也使用该级别的模型。目前来看,GPT3.5仍然是一个优秀的解决方案,它在推理成本、速度以及可用性三者之间取得了平衡。下面,我们做一个不严谨的对比测试,让大家对开源大模型的能力有一个体感。
问:根据提供的数据,让大模型按国家分组统计订单金额占比,并且用饼状图展示
The following is the order data, which is a collection of orders. Each element includes three fields, namely country, price, and user_id.
{
"orders": [
{"country": "USA", "price": 120.5, "user_id": 1},
{"country": "Canada", "price": 90.0, "user_id": 2},
{"country": "USA", "price": 110.75, "user_id": 3},