大模型应用从入门到精通(一)选择开源大模型

本文介绍了如何从入门到精通大模型应用,包括选择开源模型、部署策略、Langchain和PromptEngineering的应用,以及开源模型LLama2和通义千问的对比,同时讨论了内存管理、量化和模型选择的关键因素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导读

加入我们,一起探索大模型应用的精彩世界,精通开源模型、掌握Prompt的巧妙运用、熟悉Agent、深入Langchain框架,Spring AI框架,逐步打造属于你的AI智能体。

大模型应用从入门到精通(一)选择开源大模型

大模型应用从入门到精通(二)大模型实操:部署和运行

大模型应用从入门到精通(三)云上部署:如何将大模型搬到云端

大模型应用从入门到精通(四)Langchain:大模型时代的Spring

大模型应用从入门到精通(五)Prompt Engineering:让模型理解你的意图

大模型应用从入门到精通(六)记忆的艺术:构建有记忆力的AI

大模型应用从入门到精通(七)Agent:大模型与世界的链接

大模型应用从入门到精通(八)智能信息小助手:基于大模型的实时信息整合系统

引言:为什么选择开源大模型?

开源大模型让每一个人都能参与到这次浪潮中

LLama2 率先开源,掀起了大模型开源的热潮,这让我们每个人都可以拥有自己的大模型。现在,不仅每个人都有机会构建自己的模型,还可以对这些模型进行微调,这让我们每个人都参能参与其中。在接下来的课程中,我们将详细讲解如何有效地利用这些开源资源,让每一个热爱技术的你,都能在这场浪潮中乘风破浪。

开源模型已经达到了ChatGPT3.5的水准

GPT3.5 Turbo是一个可以进行商业应用的级别,许多国外的商业产品底层也使用该级别的模型。目前来看,GPT3.5仍然是一个优秀的解决方案,它在推理成本、速度以及可用性三者之间取得了平衡。下面,我们做一个不严谨的对比测试,让大家对开源大模型的能力有一个体感。

问:根据提供的数据,让大模型按国家分组统计订单金额占比,并且用饼状图展示

The following is the order data, which is a collection of orders. Each element includes three fields, namely country, price, and user_id.
{
  "orders": [
    {"country": "USA", "price": 120.5, "user_id": 1},
    {"country": "Canada", "price": 90.0, "user_id": 2},
    {"country": "USA", "price": 110.75, "user_id": 3},
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值