使用LM Studio与Anything LLM基于Llama-3高效构建本地知识库系统

本文详细介绍了如何使用LMStudio和AnythingLLM工具构建本地知识库,包括安装配置、模型部署、API调用、知识库应用的搭建,以及如何让非开发者快速上手。着重强调了这两个工具在简化大型模型部署和知识应用中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文详细介绍了如何使用LM Studio和Anything LLM工具来构建和部署本地知识库。文中首先解释了安装和配置大模型的步骤,随后展示了如何将模型部署为后台服务,并通过API进行调用。此外,文章还涉及了如何使用这些工具快速构建知识库应用,包括知识库的配置和问答系统的设置。整个过程强调了无需深厚编程知识即可实现快速部署和使用,适合业务专家和产品设计人员使用。

业务背景

最近一直在寻找一套最佳的基于大模型的知识库系统解决方案,需要具有如下能力:

  1. 能够快速将大型模型进行本地化的部署使用。

  2. 结合大语言模型,能有一套良好的知识库系统,方便使用。

  3. 针对业务专家和产品设计人员,即使不懂代码,也能快速构建产品原型,了解基于大型模型知识体系的构建过程,并能选型大语言模型。

  4. 针对算法人员,“套壳”大模型或微调大模型,可通过一款工具完成本地化的快速部署和分发,而不需要自己单独写一个服务。

  5. 针对开发人员,可将算法开发好的模型快速构建成后台服务,且为OpenAI标准的服务API,能让开发团队快速进行大型模型的接入测试和验证。

  6. 针对测试人员,可以在构建的大型模型和知识库问答应用中进行快速测试,并跟踪各个环节的结果,如embedding的召回结果是否覆盖所有知识点,可通过接口调用日志进行快速查看。

  7. 针对甲方的企业要快速验证知识库项目的可行性,可以使用这两个工具搭建本地的测试环境。这样可以对一些关键技术进行全流程化的跟踪调试,待验证没有问题再进行立项或系统的集成。

最终选择了LM studio + Anything LLM搭建本地知识库。

LM Studio安装部署及使用

安装

LM Studio是一款桌面软件,安装后,经过简单的配置即可使用。登录https://lmstudio.ai/ 即可看到如下界面,按自己的操作系统进行下载即可。

图片

安装完成之后,登录系统的主界面如下图所,可以看到其默认界面如下:

图片

安装完成!!!

下载和管理大模型

在LMs studio的首页即提供了大模型列表及搜索能力,可以从hugging Face上获取支持的大模型列表,并可以通过搜索获取关注的大模型。如下图搜索最近也比较火的Mistral:

### 使用 LLMStudio 集成 AnythingLLM #### 安装配置 为了在 LLMStudio使用 AnythingLLM,需先安装并配置必要的环境。这通常涉及设置 Python 环境以及安装特定版本的库文件。 ```bash pip install llm-studio anything-llm ``` 确保已正确设置了 API 密钥和其他认证信息以便访问远程模型服务[^3]。 #### 创建项目结构 创建一个新的工作目录用于保存所有的脚本和数据集,并初始化 Git 版本控制系统以跟踪更改情况: ```bash mkdir my_llm_project && cd $_ git init . touch main.py requirements.txt README.md ``` #### 编写代码实现集成功能 下面是一个简单的例子展示如何加载预训练的语言模型并通过调用 `anything_predict` 函数来进行预测操作。 ```python from llm_studio import load_model, predict as studio_predict from anything_llm import preprocess_input, postprocess_output def custom_prediction(input_text): processed_data = preprocess_input(input_text) model = load_model('path/to/model') raw_result = studio_predict(model=model, input=processed_data) final_result = postprocess_output(raw_result) return final_result ``` 此段代码展示了基本的工作流程:输入文本经过预处理后被送入到由 LLM Studio 加载好的模型中;之后再通过自定义方法对输出结果做进一步加工处理得到最终返回给用户的答案形式[^4]。 #### 应用场景举例说明 假设现在要构建一个聊天机器人应用程序,可以利用上述框架快速搭建起原型系统,在此基础上不断迭代优化直至满足实际需求为止。具体来说就是当收到用户消息时将其传递给上面提到的那个 `custom_prediction()` 方法获取回复内容然后再发送回去形成对话交互过程的一部分[^5]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值