本文详细介绍了如何使用LM Studio和Anything LLM工具来构建和部署本地知识库。文中首先解释了安装和配置大模型的步骤,随后展示了如何将模型部署为后台服务,并通过API进行调用。此外,文章还涉及了如何使用这些工具快速构建知识库应用,包括知识库的配置和问答系统的设置。整个过程强调了无需深厚编程知识即可实现快速部署和使用,适合业务专家和产品设计人员使用。
业务背景
最近一直在寻找一套最佳的基于大模型的知识库系统解决方案,需要具有如下能力:
-
能够快速将大型模型进行本地化的部署使用。
-
结合大语言模型,能有一套良好的知识库系统,方便使用。
-
针对业务专家和产品设计人员,即使不懂代码,也能快速构建产品原型,了解基于大型模型知识体系的构建过程,并能选型大语言模型。
-
针对算法人员,“套壳”大模型或微调大模型,可通过一款工具完成本地化的快速部署和分发,而不需要自己单独写一个服务。
-
针对开发人员,可将算法开发好的模型快速构建成后台服务,且为OpenAI标准的服务API,能让开发团队快速进行大型模型的接入测试和验证。
-
针对测试人员,可以在构建的大型模型和知识库问答应用中进行快速测试,并跟踪各个环节的结果,如embedding的召回结果是否覆盖所有知识点,可通过接口调用日志进行快速查看。
-
针对甲方的企业要快速验证知识库项目的可行性,可以使用这两个工具搭建本地的测试环境。这样可以对一些关键技术进行全流程化的跟踪调试,待验证没有问题再进行立项或系统的集成。
最终选择了LM studio + Anything LLM搭建本地知识库。
LM Studio安装部署及使用
安装
LM Studio是一款桌面软件,安装后,经过简单的配置即可使用。登录https://lmstudio.ai/ 即可看到如下界面,按自己的操作系统进行下载即可。
安装完成之后,登录系统的主界面如下图所,可以看到其默认界面如下:
安装完成!!!
下载和管理大模型
在LMs studio的首页即提供了大模型列表及搜索能力,可以从hugging Face上获取支持的大模型列表,并可以通过搜索获取关注的大模型。如下图搜索最近也比较火的Mistral: