大语言模型的Prompt工程、RAG和微调区别及应用示例

本文通过生活中的考试比喻,阐述了Prompt工程(考试大纲)、RAG(开卷考试)和模型微调(针对性辅导)在大语言模型开发中的角色。它们共同提升模型在特定任务中的表现和适应性,如编程辅助中的代码生成和问题解答。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在大语言模型的开发和应用中,Prompt工程、检索增强生成(Retrieval-Augmented Generation, RAG)和模型微调是三种关键技术。为了更好地理解这些技术的作用和相互之间的关系,我们可以通过一个贴近生活的比喻来进行阐述:将大语言模型比作参加考试的学生,如下图所示(从小到大我最怕的一件事情就是考试,以至于到现在每每精神压力比较大的时候,晚上做噩梦都是梦到自己在考场上,几十年来一直如此):

图片

用上图的这个示例更适合来说明几者的关系。

Prompt工程

Prompt工程可以被视为考试中的考试大纲。它指导学生(即语言模型)应该学习和复习哪些内容,以便在考试(即特定的任务)中取得好成绩。通过精心设计的输入(即提示词或问题),Prompt工程引导模型生成高质量的输出。

一个简单的示例,假设需要模型撰写一篇关于“气候变化”的文章,简单的提示词可能是“写一篇关于气候变化的文章。”通过Prompt工程,可以改进这个提示词为:“请详细描述气候变化的科学原理、主要影响以及目前的全球应对策略。”这种精细化的提示词能够引导模型产生更专业、更详尽的内容。

  • 示例 - 1 prompt提示词:写一篇关于气候变化的文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值