在大语言模型的开发和应用中,Prompt工程、检索增强生成(Retrieval-Augmented Generation, RAG)和模型微调是三种关键技术。为了更好地理解这些技术的作用和相互之间的关系,我们可以通过一个贴近生活的比喻来进行阐述:将大语言模型比作参加考试的学生,如下图所示(从小到大我最怕的一件事情就是考试,以至于到现在每每精神压力比较大的时候,晚上做噩梦都是梦到自己在考场上,几十年来一直如此):
用上图的这个示例更适合来说明几者的关系。
Prompt工程
Prompt工程可以被视为考试中的考试大纲。它指导学生(即语言模型)应该学习和复习哪些内容,以便在考试(即特定的任务)中取得好成绩。通过精心设计的输入(即提示词或问题),Prompt工程引导模型生成高质量的输出。
一个简单的示例,假设需要模型撰写一篇关于“气候变化”的文章,简单的提示词可能是“写一篇关于气候变化的文章。”通过Prompt工程,可以改进这个提示词为:“请详细描述气候变化的科学原理、主要影响以及目前的全球应对策略。”这种精细化的提示词能够引导模型产生更专业、更详尽的内容。
-
示例 - 1 prompt提示词:写一篇关于气候变化的文章