正弦交流电的表示方法

本文介绍了正弦交流电的三种表示方法:解析式中的最大值、角频率和初相位,正弦曲线图的直观应用,以及旋转相量法中相量的长度、角度和角速度。通过实例演示了如何从各方法中获取三要素并理解相量法在电路分析中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

表示正弦交流电的方法一般有三种:数学分析法、正弦曲线法和旋转相量法。

(一)解析法

用数学解析式可以表达交流电瞬时值的变化规律,即e=Emsin(ωt+φ)中,Em表示的是最大值;ω是角频率;φ是初相位。

(二)正弦曲线法

按解析式把正弦量随时间的变化规律在直角坐标系中描绘出的正弦曲线叫正弦曲线法,纵坐标表示正弦量的瞬时值,横坐标表示电度角ωt。在正弦曲线波形图中,也能获得正弦交流电的三要素,即瞬时值得最大值就是最大值;曲线循环一周的时间为一个周期T,就可得出角频率ω=2π/T;正半波的起点与原点O的夹角就是初相位。

电压、电流波形图

(三)旋转相量法

用旋转相量法表示一个正弦量的三要素,必须作如下规定:

正弦量的最大值 即为旋转相量的长度;

正弦量的初相位 即为旋转相量与横轴正向的夹角;

正弦量的角频率 即为旋转相量随时间t逆时针旋转的角速度。

则在任一瞬间,旋转相量在纵轴上的投影就等于该正弦量的瞬时值,如下图所示:

旋转相量表示法

在相量图中一般只画它的起始位置,但应理解它是以角频率ω逆时针连续旋转的,它的位置与时间有关,在经过时间,才转到虚线位置,所以,说它是时间相量。

在同一电路中,各个正弦量都是同频率旋转,它们之间的相对位置(即相位差)保持不变。因此,只要用旋转相量的初始位置来表示正弦量就可以了,我们把这种表示正弦量的方法称相量法。正弦量用相量表示所作的图称相量图。如果相量线段的长度等于正弦量的有效值,就称为正弦量的有效值相量,但该相量在纵轴上的投影就不是瞬时值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值