【PyTorch学习】(三)自定义Datasets

本文介绍了PyTorch中数据处理的重要组成部分——Datasets和Dataloader,特别是如何根据实际需求自定义Datasets。以torchvision.datasets.ImageFolder为例,说明其要求的数据结构,并指出在目标检测等场景中,此结构不适用。文章详细讲解了如何重载`__len__`和`__getitem__`函数来自定义Dataset,并展示了CocoDetection dataset的实现方式。最后,提供了一个自定义FaceLandmarksDataset的例子,用于从CSV文件加载人脸关键点坐标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torchvision.datasets源码地址:https://github.com/pytorch/vision/blob/master/torchvision/datasets


前两篇从搭建经典的ResNet,DenseNet入手简单的了解了下PyTorch搭建网络的方式,但训练一个模型光光搭建好一个网络是不够的,正所谓巧妇难为无米之炊,如何将数据处理成网络可以传递的Tensor也尤为重要,而数据准备过程最最最最最重要的就是DatasetsDataloader两部分!

torchvision.datasets.ImageFolder就是官方给出的一个datasets的事例,具体使用直接贴上官方tutorial上的代码供参考:

data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值