torchvision.datasets源码地址:https://github.com/pytorch/vision/blob/master/torchvision/datasets
前两篇从搭建经典的ResNet,DenseNet入手简单的了解了下PyTorch搭建网络的方式,但训练一个模型光光搭建好一个网络是不够的,正所谓巧妇难为无米之炊,如何将数据处理成网络可以传递的Tensor也尤为重要,而数据准备过程最最最最最重要的就是Datasets和Dataloader两部分!
torchvision.datasets.ImageFolder就是官方给出的一个datasets的事例,具体使用直接贴上官方tutorial上的代码供参考:
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', &#