论文笔记:Chinese NER Using Lattice LSTM Yue

摘要

文章提出了一种将【字】和所有【潜在词组】作为输入的模型。其有以下优势:

  • 对于基于字的方法:模型利用了词组的信息
  • 对于基于词的方法:模型设计了门控机制,解决了分词错误问题。

一、简介

文章为了在避免分词错误的情况下利用词信息,设计了一种Lattice LSTM的结构,其可以自动学习一些词组,作为输入。示意图如下:
在这里插入图片描述

二、模型

2.1 基于字的模型

模型概略图如下所示:
在这里插入图片描述

其中,输入又可以更加详细地分为以下三种:

  • 单独的字:
    在这里插入图片描述
  • 当前字和后面一个字拼接:
    在这里插入图片描述
  • 当前字和当前字所在切割词的标签(使用BMES标记形式)
    在这里插入图片描述

2.2 基于词的模型

模型概略图如下所示:
在这里插入图片描述
其中,输入又可以更加详细地分为:

  • 单独的词
    在这里插入图片描述
  • 词+Char LSTM
    在这里插入图片描述
    在这里插入图片描述
  • 词+Char CNN
    在这里插入图片描述

2.3 Lattice Model

该模型的具体解释可以参看此博客.

三、实验结果

由于数据集较多,就不一一写出来了,不过实验结果确实证明了Lattuce模型的有效性,并且能够解决一些具有歧义句子的命名实体识别问题,如下图所示:
在这里插入图片描述

指导性结论

  • 对于中文NER来说,基于字符的NER比基于词的NER表现更好
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值