显著性检验
包括参数估计与假设检验,指事先对总体的参数或者总体分布形式做出一个假设,然后利用样本信息来判断这个假设是否合理。即分为两个步骤:第一步需说明样本是否能代表总体,第二步用样本判定假设。
1.参数估计概念
参数估计:即用样本统计量估计总体的方法,包括点估计与区间估计两种。
方差齐性:方差齐性检验(Homogeneityof variance test)是数理统计学中检查不同样本的总体方差是否相同的一种方法。在方差齐性的前提下比较均值,才能知道总体的概况。
点估计:包括矩阵估计法与最大似然估计法区间估计:包括点估计与描述估计精确度的正负值。即判断某值在哪个区间内,并判断在这个区间内的置信度,置信度通常为95%/90%。
例:样本量为100,均值为80,总体标准差为100
1.1用样本估计总体
总体均值=样本均值
样本方差与总体方差:样本方差为n-1,总体方差为n。即有样本2,1,2,4,5,7,用这些数估计总体方差时需除以n-1
总体比例=样本比例
1.2用总体估计样本
根据总体个体比例估计样本个体比例(如总体中每包100颗糖果中红色糖果的比例的25%,买到一包糖果红色糖果比例大于40%的概率为多少)利用比例的抽样分布,能够求出某一个随机选择的、大小为n的样本的“成功比例。即每100颗糖果中抽到红色糖果概率为0.25,X~B(100,0.25)
根据总体个体均值估计样本个体均值:X~N(μ, σ^2)
2.假设检验概念
2.1假设检验六步骤
(1)根据样本,确定整体是不是属于假设的情况。
(2)需要进行检验的假设
(3)选择检验统计量
(4)确定用于做决策的拒绝域(求拒绝域之前定显著性水平)
(5)求出检验统计量的p值
(6)查看样本结果是否位于拒绝域内
(7)作出决策
2.2各检验适用情况
T检验:用于样本含量较小,总体方差 σ未知的情况。(计算条件:总体均数已知,样本均数以及样本标准误已知,样本来自正太或近似正态总体)
3.检验依据
显著性水平就是指当原假设正确时人们却把它拒绝了的风险或概率。
显著性水平+置信水平=1
显著性水平越大,结果被拒绝的可能性就越大(即H0假设某药能治疗鼻鼾,显著性水平为5%,即置信水平为95%,假设H0被拒绝的可能性为5%,H0被接受的可能性为95%)
构建置信区间[均值-抽样偏差,均值+抽样偏差]
置信区间越宽,结果越无用。