统计学术语及关系——显著性检验

显著性检验

包括参数估计与假设检验,指事先对总体的参数或者总体分布形式做出一个假设,然后利用样本信息来判断这个假设是否合理。即分为两个步骤:第一步需说明样本是否能代表总体,第二步用样本判定假设。

 

1.参数估计概念

参数估计:即用样本统计量估计总体的方法,包括点估计与区间估计两种。

方差齐性:方差齐性检验(Homogeneityof variance test)是数理统计学中检查不同样本的总体方差是否相同的一种方法。在方差齐性的前提下比较均值,才能知道总体的概况。

点估计:包括矩阵估计法与最大似然估计法

区间估计:包括点估计与描述估计精确度的正负值。即判断某值在哪个区间内,并判断在这个区间内的置信度,置信度通常为95%/90%。

例:样本量为100,均值为80,总体标准差为100

1.1用样本估计总体

    总体均值=样本均值

    样本方差与总体方差:样本方差为n-1,总体方差为n。即有样本2,1,2,4,5,7,用这些数估计总体方差时需除以n-1

    总体比例=样本比例

 

1.2用总体估计样本

     根据总体个体比例估计样本个体比例(如总体中每包100颗糖果中红色糖果的比例的25%,买到一包糖果红色糖果比例大于40%的概率为多少)利用比例的抽样分布,能够求出某一个随机选择的、大小为n的样本的“成功比例。即每100颗糖果中抽到红色糖果概率为0.25,X~B(100,0.25)

    根据总体个体均值估计样本个体均值:X~N(μ, σ^2)


2.假设检验概念

2.1假设检验六步骤

(1)根据样本,确定整体是不是属于假设的情况。

(2)需要进行检验的假设

(3)选择检验统计量

(4)确定用于做决策的拒绝域(求拒绝域之前定显著性水平)

(5)求出检验统计量的p值

(6)查看样本结果是否位于拒绝域内

(7)作出决策


2.2各检验适用情况


T检验:用于样本含量较小,总体方差 σ未知的情况。(计算条件:总体均数已知,样本均数以及样本标准误已知,样本来自正太或近似正态总体)


3.检验依据

显著性水平就是指当原假设正确时人们却把它拒绝了的风险或概率。

显著性水平+置信水平=1

显著性水平越大,结果被拒绝的可能性就越大(即H0假设某药能治疗鼻鼾,显著性水平为5%,即置信水平为95%,假设H0被拒绝的可能性为5%,H0被接受的可能性为95%)

构建置信区间[均值-抽样偏差,均值+抽样偏差]

置信区间越宽,结果越无用。



 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值