【读论文02】时空预测-MFA-MRSTGRN

【读论文02】- 时空预测-MFA-MRSTGRN

Abstract

存在问题:虽然现有的预测方法大多侧重于对单个监测点的时间序列预测,但对滑坡变形时空特征的研究有限。
解决方法:本文提出了一种新的具有多级特征注意的多关系时空图残差网络 (MFA-MRSTGRN),通过时空融合有效提高了滑坡位移的预测性能。
具体做法:该模型将内部渗流因子作为数据特征增强与外部触发因子集成在一起,从而能够准确捕捉滑坡位移的复杂时空特征并构建多源异构数据集。MFA-MRSTGRN 模型融合了动态图论和四个关键模块:多级特征注意力、时间残差分解、空间多关系图卷积和时空融合预测。
效果:MFA-MRSTGRN模型通过整合多源异构数据,有效解析了滑坡的多维时空复杂性。在凉水井滑坡位移预测中,该模型显著优于传统方法(如RF、LSTM和ST-GCN),关键指标表现优异:MAE(1.27mm)、RMSE(1.49mm)、MAPE(0.026)和R²(0.88),展现了更高的预测精度和可靠性。此外,特征消融实验表明,纳入内部渗流因子可以提高滑坡位移模型的预测性能。

1. Introduction

引出问题
滑坡是一种破坏性极强的地质灾害,可能引发连锁灾害并造成重大损失。为有效防灾减灾,需要整合多源数据,从多维度实现滑坡变形的精准预测。
滑坡变形监测技术近年来快速发展,GNSS系统能直接获取高精度的位移时序数据,而各类传感器可监测降雨、水位等外部诱因。但滑坡内部渗流参数(如孔隙水压)的监测仍存在困难,导致现有预测模型多缺乏关键的水文地质特征数据。为提升预测精度,亟需整合位移监测数据、外部环境数据和推算的内部渗流特征,构建多源融合的异构数据集,突破当前数据维度的局限性。
位移预测方法发展
滑坡位移预测方法经历了从传统统计模型到机器学习的演进。早期采用灰色预测、多元线性回归(MLR)和ARIMA等统计方法,虽能处理线性时序数据,难以捕捉多因子间的非线性关系且依赖人工特征选择。随着技术进步,LSTM、随机森林(RF)等机器学习方法展现出处理高维数据的优势,仍局限于单点时序预测,未能考虑滑坡变形的时空关联性。当前研究面临的关键挑战在于:如何突破单点时间序列分析的局限,有效整合空间维度特征,建立能同时反映滑坡时空演化规律的预测模型,以提升预测精度并降低计算成本。
解决方法
本文提出了一种多关系时空图残差网络模型(MFA-MRSTGRN),通过整合动态图神经网络和多级特征注意力机制,突破传统滑坡位移预测方法的局限。
该模型融合内部渗流因子和外部触发因素,构建多源异构数据集,并采用四大核心模块:1. 多级特征注意力模块实现特征自适应加权,2. 时差分解模块捕捉多粒度时序特征,3. 空间多关系图卷积模块解析监测点空间关联,4. 最终通过特征融合实现精准预测。
在三峡库区凉水井滑坡的实证研究中,该模型在预测精度上显著优于RF、LSTM和ST-GCN等传统方法,并通过特征消融实验验证了各影响因素的贡献度,为滑坡时空预测提供了新范式。

2. methodology

2.1. 基于图论的滑坡变形监测动态图构建

Graph theory为滑坡位移预测提供了创新研究框架,通过动态图结构有效表征多监测点间的时空关联性。在该模型中:1)监测点作为动态图的顶点(V),位移数据及内外影响因素构成多维顶点属性矩阵Y_t∈R(k×(p1+p2+1));2)监测点间的空间关系作为边(E),通过权重矩阵W∈R(k×k)反映渗流条件、空间距离等特征;3)引入时间维度t,使顶点集V(t)和边集E(t)能动态更新,实时整合位移时序数据、外部触发因子(降雨、水位等)和内部渗流参数(孔隙水压等)。这种动态图构建方法突破了传统静态图的局限,为滑坡多源异构数据的时空关联建模提供了新范式。
(1) 建立顶点属性
在本研究中,顶点表示滑坡位移监测站。每个顶点具有以下属性:
(a) 滑坡位移数据
(b) 降雨量、水库水位波动等外部影响因素
(c) 渗流速度和孔隙水压等内部渗流影响因素
(2) 计算边权重并构建邻接矩阵
w i j = e − d i s t ( i , j ) 2 2 σ 2 w_{ij}=e^{-\frac{dist(i,j)^2}{2\sigma^2}} wij=e2σ2dist(i,j)2

  • w i j w_{ij} wij:监测点i与j的空间关联权重
  • d i s t ( i , j ) dist(i,j) dist(i,j):两监测点间的欧氏距离
  • σ 2 \sigma^2 σ2:全局距离方差参数
  • i , j i,j i,j:滑坡位移监测点编号

特性:

  1. 权重随距离呈指数衰减
  2. 构建无向邻接矩阵 A W A_W AW
  3. 权重范围 [ 0 , 1 ] [0,1] [0,1],值越大关联性越强

(3) 节点功能集成
本文采用特征合成与集成方法,将滑坡位移、外部影响因素、内部渗流等相关数据组合成一个多维特征向量。
y i = [ y i a , y i b , y i c ] y_i = [y_i^a, y_i^b, y_i^c] yi=[yia,yib,yic]

  • y i a y_i^a yia:第i个监测点的归一化位移参数
  • y i b y_i^b yib:第i个监测点的归一化外部影响因素(降雨/水位等)
  • y i c y_i^c yic:第i个监测点的归一化内部渗流因子(孔隙水压等)

特性:

  1. 多源特征融合:整合位移/环境/地质三类数据
  2. 归一化处理:消除量纲影响
  3. 维度拼接:形成 k × ( p 1 + p 2 + 1 ) k×(p1+p2+1) k×(p1+p2+1)维特征矩阵
    k k k=监测点数量, p 1 p1 p1=外部因素维度, p 2 p2 p2=渗流因素维度)
    (4) 构建动态图
    ​第 i i i个监测点在 t t t时刻的特征向量表示为:
    Y i t = [ Y i 1 t , Y i 2 t , … , Y i m t ] Y_i^t = [Y_{i1}^t, Y_{i2}^t, \ldots, Y_{im}^t] Yit=[Yi1t,Yi2t,,Yimt]
    G t = ( V t , E t ) G_t = (V_t, E_t) Gt=(Vt,Et)
    • 顶点集 V t V_t Vt: 各时刻监测点特征向量
    • 边集 E t E_t Et: 高斯核权重矩阵 A W A_W AW
    • 时间维度 t = 1 , 2 , . . . , T t=1,2,...,T t=1,2,...,T连续更新

2.2. 具有多层次特征注意的多关系时空图残差网络模型

MFA-MRSTGRN 模型的框架由多级特征注意力模块、时间残差分解模块、空间多关系图卷积模块和时空融合预测输出模块四个部分组成。
首先,多级特征注意力模块通过多级注意力机制聚合滑坡位移输入特征,通过对不同级别特征进行加权,全面捕捉不同特征之间的关系,并选择重要的特征信息;
其次,时差分解模块捕获历史数据中的时间关系,同时考虑滑坡位移在时间维度上的连续性和连续性。通过引入不同粒度 (Short-term, Medium-term, Long-term) 的残差结构和三维张量,它学习了顺序数据中的时间依赖性,从而更准确地捕获了数据中的动态模式和趋势。
接下来,空间多关系图卷积模块提取各位移监测点之间的空间信息,将不同类型的关系信息有效地传递给节点,利用多条边的信息更新节点,高效分析多种关系类型下的节点特征,处理滑坡位移空间依赖性。
最后,时空融合预测输出模块将前三个模块在时间和空间上进行集成,克服了时空信息处理的异质性并有机地融合在一起,使模型能够全面学习和处理复杂的时空数据并生成预测结果。图 1 说明了 MFA-MRSTGRN 模型的整体架构。

在这里插入图片描述

图1

2.2.1. 多级特征注意力模块

多级特征注意力模块 (MFAM) 的主要功能是在特征层面增强对不同特征之间相关性的学习,捕捉外部影响因素、内部渗流和滑坡位移之间的相互依存关系。这使模型能够更多地关注重要的特征信息,在不同特征之间动态分配权重,并有效地捕获各种特征之间的相关性。

  1. 输入特征向量

    • 时间步 t t t的特征矩阵:
      Y ( t ) = [ y 1 ( t ) , . . . , y n ( t ) ] T Y(t) = [y_1(t),...,y_n(t)]^T Y(t)=[y1(t),...,yn(t)]T
      y i ( t ) = [ y i a ( t ) , y i b ( t ) , y i c ( t ) ] y_i(t) = [y_i^a(t),y_i^b(t),y_i^c(t)] yi(t)=[yia(t),yib(t),yic(t)]
      (位移/外部因素/渗流因素)
  2. 双级注意力机制
    第一级(外部因素→位移)​

    • 查询矩阵:
      S 1 = Y b ( t ) W S 1 ( W S 1 ∈ R p 1 × d S 1 ) S_1 = Y^b(t)W_{S1} \quad (W_{S1}∈\mathbb{R}^{p_1×d_{S1}}) S1=Yb(t)WS1(WS1Rp1×dS1)
    • 键值矩阵:
      K 1 = Y a ( t ) W K 1 , V 1 = Y a ( t ) W V 1 K_1 = Y^a(t)W_{K1}, \quad V_1 = Y^a(t)W_{V1} K1=Ya(t)WK1,V1=Ya(t)WV1
    • 注意力权重:
      F 1 ( t ) = softmax ( S 1 K 1 T d K 1 ) F_1(t) = \text{softmax}\left(\frac{S_1K_1^T}{\sqrt{d_{K1}}}\right) F1(t)=softmax(dK1 S1K1T)
    • 输出:
      P 1 ( t ) = F 1 ( t ) V 1 ( t ) P_1(t) = F_1(t)V_1(t) P1(t)=F1(t)V1(t)

    第二级(渗流因素→位移)​

    • 结构对称,输入替换为 Y c ( t ) Y^c(t) Yc(t)
  3. 特征融合

    • 级联输出:
      P ( t ) = Concat ( P 1 ( t ) , P 2 ( t ) ) P(t) = \text{Concat}(P_1(t),P_2(t)) P(t)=Concat(P1(t),P2(t))
    • 维度变换:
      Z ( t ) = P ( t ) W O ( W O ∈ R 2 d V × d o u t ) Z(t) = P(t)W_O \quad (W_O∈\mathbb{R}^{2d_V×d_{out}}) Z(t)=P(t)WO(WOR2dV×dout)

补充

  • 特征级交叉注意力(外部/内部因素→位移)
  • 可学习参数矩阵:
    { W S ∗ , W K ∗ , W V ∗ } \{W_{S*},W_{K*},W_{V*}\} {WS,WK,WV}动态调整特征重要性
  • 维度压缩比: p 1 + p 2 d o u t \frac{p_1+p_2}{d_{out}} doutp1+p2(典型值4:1)
2.2.2. 时间残差分解

本文构建了时间维度残差分解模块,以充分探究不同时间维度的滑坡位移监测数据特征。它将滑坡时间序列数据分解为趋势项和残差项,从而可以更好地学习和处理时间序列数据的模式和变化(Dai,2019)。同时,将来自各个滑坡位移监测点的时空多维数据设计成三维张量图,能够更全面地捕捉节点的多维特征,更详细地分析节点特征。详细地说,三维张量图的表示是一种数据结构。在本研究中,第一个维度表示时间,第二个维度表示图形结构中的节点,第三个维度表示图形结构中的。不同的时间点图结构在时间维度上合并。这种三维张量与时间残差分解的组合使模型能够同时考虑不同时间粒度的数据信息。该论文分为三个粒度:
短期粒度 (sg) 部分:由时间轴相邻的短时间跨度图组成,主要捕捉数据在短期内的动态变化。
中期粒度 (mg) 部分:由周期适中(如季节性变化)的图表组成,主要捕捉数据变化的周期性特征。
长期粒度 (lg) 部分:由时间跨度较长(例如年度变化)的图表组成,主要旨在捕获数据变化的长期趋势。

  1. 三维张量构建

    • 输入数据结构:
      G ∈ R T × N × F \mathcal{G} \in \mathbb{R}^{T \times N \times F} GRT×N×F
      • T T T: 时间步长
      • N N N: 监测点数量
      • F F F: 特征维度(位移+环境+渗流)
  2. 多粒度时间分解

    粒度类型时间跨度数学表示物理意义
    短期(sg)周尺度 G s g = [ D t − l s g , . . . , D t − 1 ] \mathcal{G}_{sg}=[D_{t-l_{sg}},...,D_{t-1}] Gsg=[Dtlsg,...,Dt1]捕捉降雨等短期触发效应
    中期(mg)月尺度 G m g = [ D t − q ( l m g − 1 ) , . . . , D t − 1 ] \mathcal{G}_{mg}=[D_{t-q(l_{mg}-1)},...,D_{t-1}] Gmg=[Dtq(lmg1),...,Dt1]反映季节性水位变化
    长期(lg)半年尺度 G l g = [ D t − p ( l l g − 1 ) , . . . , D t − 1 ] \mathcal{G}_{lg}=[D_{t-p(l_{lg}-1)},...,D_{t-1}] Glg=[Dtp(llg1),...,Dt1]表征地质蠕变趋势
  3. 残差分解过程

    • 趋势项提取:
      T t = MA ( G l g , k ) T_t = \text{MA}(\mathcal{G}_{lg}, k) Tt=MA(Glg,k)
      k k k=滑动窗口大小)
    • 残差项计算:
      R t = G s g − downsample ( T t ) R_t = \mathcal{G}_{sg} - \text{downsample}(T_t) Rt=Gsgdownsample(Tt)

    以下扩展

    1. 关键技术特征
    • 多尺度采样:
      • 短期( q = 1 q=1 q=1周)
      • 中期( p = 1 p=1 p=1月)
      • 长期( r = 6 r=6 r=6月)
    • 三维卷积核设计:
      Conv3D ( k t × k n × k f ) \text{Conv3D}(k_t \times k_n \times k_f) Conv3D(kt×kn×kf)
      k t k_t kt=时间维卷积核大小)
  4. 输出特征融合
    H = LayerNorm ( G s g ⊕ G m g ⊕ G l g ) \mathcal{H} = \text{LayerNorm}(\mathcal{G}_{sg} \oplus \mathcal{G}_{mg} \oplus \mathcal{G}_{lg}) H=LayerNorm(GsgGmgGlg)

该文介绍了时域残差分解,并构建了三维张量图,使整体模型能够更准确地捕捉滑坡位移变化的多维和多尺度特征。然后将分解后的三维张量图馈送到后续模块中进行学习和预测。

2.2.3. 空间多关系图卷积模块

空间多关系图卷积模块的主要目标是捕获空间领域内节点之间的复杂关系,从而充分利用来自多站点滑坡位移监测数据的空间特征信息。该模块用于处理结构一致但存在于不同时间序列中的图,对应于上一节中提到的三维张量图。

  1. 核心组件

    • GCN层(N1):
      H ( 1 ) = σ ( D ~ − 1 / 2 W ~ D ~ − 1 / 2 X Θ ) H^{(1)} = \sigma(\tilde{D}^{-1/2}\tilde{W}\tilde{D}^{-1/2}X\Theta) H(1)=σ(D~1/2W~D~1/2XΘ)

      • W ~ = W + I \tilde{W}=W+I W~=W+I (带自连接的权重矩阵)
      • 平均池化实现多图→单图转换
    • ResGCN层(N2):
      H ( 2 ) = H ( 1 ) + σ ( W 2 H ( 1 ) ) H^{(2)} = H^{(1)} + \sigma(W_2H^{(1)}) H(2)=H(1)+σ(W2H(1))
      残差连接保持梯度流动

    • MR-GCN层(N3):
      H ( 3 ) = ∑ r ∈ R σ ( D ~ r − 1 / 2 W r D ~ r − 1 / 2 H ( 2 ) Θ r ) H^{(3)} = \sum_{r\in R}\sigma(\tilde{D}_r^{-1/2}W_r\tilde{D}_r^{-1/2}H^{(2)}\Theta_r) H(3)=rRσ(D~r1/2WrD~r1/2H(2)Θr)

      • R R R: 关系类型集合(空间距离/渗流关联等)
  2. 动态权重矩阵
    W i j = 1 1 + α ⋅ d i s t ( i , j ) W_{ij} = \frac{1}{1+\alpha\cdot dist(i,j)} Wij=1+αdist(i,j)1

    • α \alpha α: 可学习衰减系数
    • d i s t ( i , j ) dist(i,j) dist(i,j): 监测点间综合距离(空间+地质)
  3. 技术优势

    • 三阶空间特征提取:

      1. GCN: 基础邻域特征
      2. ResGCN: 深层特征保持
      3. MR-GCN: 多关系建模
    • 特征融合:
      F s p a c e = L a y e r N o r m ( H ( 1 ) ∥ H ( 2 ) ∥ H ( 3 ) ) F_{space} = LayerNorm(H^{(1)} \| H^{(2)} \| H^{(3)}) Fspace=LayerNorm(H(1)H(2)H(3))

2.2.4. 时空融合预测输出模块

该模块的主要目标是整合从上述所有模块中提取的特征信息,并输出预测结果。该模块的关键挑战在于有效地集成多个模块的输出,从而提高模型的整体预测性能。

  1. 输入特征整合 综合以上各节,该模块综合处理了来自四个模块的输入

    • 四模块特征矩阵:
      • 多级特征注意力: P M F A ∈ R n × m P_{MFA} \in \mathbb{R}^{n \times m} PMFARn×m
      • 多粒度时空特征:
        • 短期: P s g ∈ R n × m P_{sg} \in \mathbb{R}^{n \times m} PsgRn×m
        • 中期: P m g ∈ R n × m P_{mg} \in \mathbb{R}^{n \times m} PmgRn×m
        • 长期: P l g ∈ R n × m P_{lg} \in \mathbb{R}^{n \times m} PlgRn×m
  2. 特征融合机制

    • 可学习权重矩阵:
      W ∗ ∈ R m × m W_{*} \in \mathbb{R}^{m \times m} WRm×m
    • Hadamard积融合:
      P f u s i o n = ∑ k ∈ { M F A , s g , m g , l g } W k ⊙ P k P_{fusion} = \sum_{k\in\{MFA,sg,mg,lg\}} W_k \odot P_k Pfusion=k{MFA,sg,mg,lg}WkPk

      P Fusion = W MFA ⊗ P MFA + W sg ⊗ P sg + W mg ⊗ P mg + W lg ⊗ P lg P_{\text{Fusion}} = W_{\text{MFA}} \otimes P_{\text{MFA}} + W_{\text{sg}} \otimes P_{\text{sg}} + W_{\text{mg}} \otimes P_{\text{mg}} + W_{\text{lg}} \otimes P_{\text{lg}} PFusion=WMFAPMFA+WsgPsg+WmgPmg+WlgPlg
  3. 符号定义

    • ⊗ \otimes : Hadamard积(逐元素乘)
    • W ∗ W_{*} W: 可学习权重矩阵(MFA/多粒度时空特征)
    • P ∗ P_{*} P: 输入特征矩阵(维度 n × m n \times m n×m
  4. 公式特征

    • 四模态加权融合结构
    • 典型应用:滑坡多源时空特征融合

以下扩展

  1. 输出预测

    • 位移预测层:
      Y ^ t + 1 = ReLU ( P f u s i o n W p + b p ) \hat{Y}_{t+1} = \text{ReLU}(P_{fusion}W_p + b_p) Y^t+1=ReLU(PfusionWp+bp)
      • W p ∈ R m × 1 W_p \in \mathbb{R}^{m \times 1} WpRm×1:输出权重
    • 多监测点同步输出:
      Y ^ t + 1 = [ y ^ 1 , . . . , y ^ n ] T \hat{\mathbf{Y}}_{t+1} = [\hat{y}_1,...,\hat{y}_n]^T Y^t+1=[y^1,...,y^n]T
  2. 技术优势

    • 自适应特征加权:
      α k = softmax ( W k T P k ) \alpha_k = \text{softmax}(W_k^TP_k) αk=softmax(WkTPk)
    • 计算复杂度优化:
      • 融合层FLOPs: O ( 4 n m 2 ) \mathcal{O}(4nm^2) O(4nm2)
    • 端到端可微分:
      ∂ L ∂ W k = P k ⊙ ∇ P f u s i o n \frac{\partial \mathcal{L}}{\partial W_k} = P_k \odot \nabla_{P_{fusion}} WkL=PkPfusion
      特征融合策略可以自适应地处理和整合来自不同模块的信息,从而获得更精确、更全面的滑坡位移预测。该策略不仅加强了综合模型对滑坡复杂整体变形动力学的可解释性,而且增强了其预测不同类型滑坡位移曲线的泛化能力。
      四个模块的集成实现了联合预测滑坡多个监测点整体位移的目标。这种网络结构充分利用了滑坡位移的时空融合特性,显著提高了模型在各个方面的预测性能。为滑坡位移预测预警提供了更高效的解决方案和强有力的技术支持

2.3. 预测模型的评估和比较

2.3.1. 滑坡位移预测模型评价指标

(1) 评价指标
本文使用 MAE (平均绝对误差)、MAPE (平均绝对百分比误差)、RMSE (均方根误差) 和 R2(决定系数) 四个评价指标评估滑坡位移模型的预测性能。
(2) 其他比较
本文将三种不同模型的预测性能与 MFA-MRSTGRN 模型进行了比较,包括随机森林 (RF)、长短期记忆 (LSTM) 和时空图卷积网络 (ST-GCN)。

2.3.2. 特征消融实验的构建

为了探究 多级特征注意力模块 MFAM 中不同因素对模型整体性能的影响,本文建立了两组特征消融实验。本系列实验旨在逐步去除不同影响因素的相关数据,以深入分析这些因素对滑坡位移预测的影响。实验设计分为两个实验组和两个对照组。实验组的具体流程说明如下:
第 1 组 (FMA-STGRN-0):仅使用内部渗流数据 (渗流速度、孔隙水压),而排除外部影响因素数据。该组通过将滑坡位移动态图信息与内部渗流数据(不包括外部影响因子数据)相结合来分析模型性能。
第 2 组 (FMA-STGRN-1):仅使用外部影响因素数据 (降雨量、水库水位),而排除了内部渗流数据。该组通过将滑坡位移动态图信息与外部影响因子数据(不包括内部渗流数据)相结合来分析模型性能。
实验组配置

实验组名称使用数据排除数据特征组合方式
FMA-STGRN-0渗流速度、孔隙水压降雨量、水库水位位移数据+内部渗流特征
FMA-STGRN-1降雨量、水库水位渗流参数位移数据+外部环境特征
本节旨在通过特征消融实验评估 MFAM 中外部影响因子数据和内部渗流数据的重要性,并评估它们对滑坡位移预测性能的影响。目标是指导后续的特征选择和模型优化工作,从而提高综合预测模型的性能和可靠性。

3. 案例研究

3.1. 地质条件

凉水井滑坡位于三峡库区云阳县长江右岸(距大坝206公里),属典型库岸滑坡,具有以下关键特征:

  1. 几何特征
    • 规模:纵长434m×横宽358m,平均厚度34.5m,体积约407.8万m³
    • 高程:100-319.5m(高差221.5m)
    • 坡度:前缘缓(30°-35°),中后部陡峭

  2. 变形特征
    • 前缘受库水位波动侵蚀,形成明显位移裸露面
    • 后缘陡峭基岩存在崩落风险,自重加载效应显著

  3. 水文地质影响
    • 前缘常年处于长江水位以下
    • 库水位波动与岩体重力共同驱动变形

3.2. 监控系统

凉水井滑坡监测系统关键信息如下:

  1. 监测体系配置
    • 时间范围:2019.06-2023.02(持续44个月)
    • 空间布局:沿滑坡前-中-后剖面布设9个监测点(GNSS基准站)
    • 数据类型:
    ◦ 地表位移(水平+垂直合成矢量位移)
    ◦ 环境因子(降雨量+水库水位)

在这里插入图片描述

4. 构建综合数据集

4.1. 外部影响因素数据

水库沿岸边坡的外部影响因素主要包括降雨量和水库水位变化。首先,如图 4 中的阴影区域所示,雨季存在阶跃变化,导致滑坡位移波动显著,这与降雨强度呈正相关。但是,也存在一定的累积效应和滞后效应,因此选择短期、中期和长期降雨强度作为影响因素。同时,水库水位的波动也会引起滑坡位移的阶跃变化,特别是当水库水位下降时,导致边坡发生明显的变形。由于滑坡体内地下水的滞后效应,选择水库水位和短期波动作为影响因素。

4.2. 内部渗流影响因素数据

4.2.1. 数值分析模型

基于凉水井滑坡工程地质调查资料和近年来的相关监测数据,利用数值分析软件GeoStudio建立了凉水井滑坡3个剖面(1-1′、2-2′、3-3′)的数值计算模型。旨在进一步分析雨量和库水位变化影响下滑坡内部渗流的变化。本研究旨在调查多年降雨和水库水位波动条件下滑坡渗流场的变化。
根据调查资料中描述的3种剖面的地质分布和滑坡材料的组成,建立的数值模型主要包括滑体、滑带和基岩3部分。滑体由碎裂的岩层组成,滑带由粉砂质粘土层组成,基岩层主要由渗透性差的砂和泥岩互层组成,作为不透水层处理。网格模型采用非结构化网格划分,最大单元尺寸为 4 m,最小单元尺寸为 2 m,如图 5 所示。结合调查报告和大量三峡库区滑坡试验统计数据,综合确定了凉水井滑坡数值模拟的物理力学计算参数,如表1所示。数值模拟计算主要利用 GeoStudio 软件中的 SEEP/W 模块来建立相应的渗流分析模块。

4.2.2. 滑坡渗流分析与数据提取

本研究发现,所有选定点的孔隙水压力都受水库水位和降雨变化的周期性波动的影响,在滑坡区靠近水位变化区时观察到的变化更大。测试点大致分为三类:
A型位于水库水位波动带内的滑坡表面,主要受滑坡前沿水位变化的控制,孔隙水压力变化曲线与水库水位变化曲线具有较高的相似性。
B 型位于最高水库水位以上的滑坡体内部,孔隙水压力变化直接受降雨影响,随降雨强度和周期性波动。C 型位于最高水位以下的滑坡体内部,孔隙水压变化受降雨和库水位共同影响。鉴于C型测试点与A型和B型相比具有相当长的流道长度,
C型水库水位波动和降雨强度对孔隙水压力的影响呈时间滞后,这与滑坡体的渗透性、水位上升速度等因素有关。 和降雨强度。
同样,不同位置的渗流速度也表现出具有空间变化的各种类型的变化。因此,沿 3 个剖面选择不同空间位置的多个测试点,以分析它们对滑坡位移的影响,如图 5 所示。
滑坡内部的渗流速度和孔隙水压力对滑坡位移有显著影响,但对其在位移预测中的应用研究有限。最初,本研究利用 GeoStudio 计算所有空间点的渗流速度和孔隙水压力的时间序列数据。随后,对同一剖面上监测点的位移与不同空间点的渗流速度和孔隙水压力数据进行了相关性分析,如图 6 所示。研究发现,监测点位移与渗流速度和孔隙水压力之间存在较强的相关性,大多数相关系数达到 0.8 左右。最后,从每个监测点位移对应的强相关空间点中选择渗流数据作为最优输入特征,大大提高了输入到综合多源数据集中的预测精度。这一增强数据特征的过程利用了现有的工程地质调查数据和相关监测数据,使用 GeoStudio 提取与滑坡位移高度相关的渗流数据,增加了综合训练数据集的多样性和数量,从而增强了模型的鲁棒性和泛化能力。

5. 结果和分析

5.1. 使用 MFA-MRSTGRN 预测滑坡位移

本文采用多层次特征关注的多关系时空图残差网络模型,对三峡库区凉水井滑坡 9 个监测点(GNSS-1 到 GNSS-9)的累积位移进行预测。它结合了多个数据源,包括滑坡变形的时空异质特征、外部触发因素(降雨量、水库水位)和内部渗流影响因素。下面从多个角度讨论模型的预测结果和预测性能。
首先,MFA-MRSTGRN 的预测结果如图 7 所示,9 个监测点的预测位移与实际监测值非常接近。从图 7 中可以直观地观察到,MFA-MRSTGRN 在滑坡位移快速波动和动期间可以更准确地预测,标准误差线保持在较短的范围内。例如,GNSS-1 监测点对 2022 年 9 月 2 日和 2022 年 10 月 7 日左右发生的两次突变的平均预测标准误差分别保持在 1.1 和 0.8。此外,MFA-MRSTGRN 可以更准确地捕捉滑坡位移的细微波动,标准误差线在大多数时刻显示相对较短且稳定的值。

接下来,我们分析两个错误指标:MAE 和 RMSE。据观察,大多数监测点的位移预测误差很小。例如,GNSS-5 和 GNSS-6 的 MAE 值分别为 0.847 和 0.769,而它们的 RMSE 值分别为 0.972 和 0.941。然而,GNSS-8 表现出相对较大的误差,MAE 和 RMSE 值分别为 2.627 和 3.093。这是由于其独特的地质条件,包括滑坡中部附近的侧面张力裂缝和侧斜裂缝,导致显着的累积位移。
最后,使用 MAPE 分析位移预测的准确性。结果发现,所有站点的 MAPE 值都在 3% 左右,这表明所提出的模型所做的位移预测具有很高的准确性。此外,使用 R 评估模型的拟合优度2.所有监测点的拟合优度均达到 80%,GNSS-2、GNSS-4 和 GNSS-7 均超过 90%,表现出出色的预测性能,与观测值高度拟合。这为模型的实际应用提供了有力的保障。

5.2. MFA-MRSTGRN 与其他模型的位移预测结果比较

将 MFA-MRSTGRN 模型与其他三种预测方法进行比较分析,进一步探索所提模型在滑坡位移预测中的性能。
首先,根据图 8 所示的预测,可以直观地观察到 MFA-MRSTGRN 模型在 9 个滑坡位移监测点上表现出优异的预测性能。特别值得注意的是,它对滑坡位移趋势的快速变化的响应能力以及捕捉细微波动的能力,明显优于其他三个预测模型。例如,在 GNSS-1 滑坡位移快速减少和增加期间,MFA-MRSTGRN 模型可以提供更准确的预测。

此后,通过根据图 9 和表 2 分析指标的平均值、最大值和最小值,发现 MFA-MRSTGRN 模型在 MAE 和 RMSE 误差指标方面表现出优异的预测性能。具体来说,其平均 MAE 和 RMSE 值分别为 1.275 和 1.496。与其他三种模型相比,MFA-MRSTGRN 模型在所有 9 个监测点的预测误差较小,表明预测准确性更高。虽然 ST-GCN 模型的平均误差低于 RF 和 LSTM 模型,但它在某些监测点(如 GNSS-8)表现出更大的误差。对最小值和最大值的进一步分析表明,MFA-MRSTGRN 模型的预测表明误差范围较小,表明该模型具有良好的可靠性和稳定性。
此外,使用 MAPE 进行了可视化分析,以评估平均预测误差占实际值的百分比。结果发现,MFA-MRSTGRN 模型的所有 MAPE 值都低于其他三个模型,再次凸显了其减少预测误差的能力。此外,关于 R2拟合优度指标,MFA-MRSTGRN 模型在拟合所有监测曲线方面也表现出强大的优势,尤其是与 RF 和 LSTM 模型相比,如 GNSS-1 和 GNSS-3 监测点观察到的那样。

5.3. 特征消融实验

特征消融实验用于评估 MFAM 在模型整体预测性能中的关键作用,并深入研究内部渗流因子和外部触发因子的增强效应。设计了两组消融实验,其中 MFA-MRSTGRN-0 表示仅使用内部渗流因子,MFA-MRSTGRN-1 表示仅使用外部触发因子。将实验组与所提出的方法进行比较,讨论它们在滑坡位移预测中的性能。
表 3 显示了两个消融实验组和对照组在 9 个监测点的评价结果,包括 4 个评价指标的平均值、最大值和最小值的详细数据。图 10 显示了其预测指标的可视化,允许更直观地观察评估指标的变化,并有助于分析实验组对预测性能的影响。

通过比较各组的误差数据,发现两组消融实验组的 MAE 、 RMSE、MAPE 值均高于 MFA-MRSTGRN 对照组,而 R2拟合优度指标减少。这表明内部渗流因子和外部触发因子在滑坡位移预测中都起着重要作用。此外,与 MFA-MRSTGRN-1 相比,MFA-MRSTGRN-0 表现出更小的预测误差、更高的预测精度和拟合优度,表明内部渗流因子比外部触发因子更有效地增强凉水井滑坡的预测性能。因此,在特征数据增强过程中纳入内部渗流因子至关重要。此外,与其他三个模型相比,实验组也表现出略小的误差,表明 MFA-MRSTGRN 的四个模块在处理来自多个来源的异构数据时表现出很强的鲁棒性和出色的预测性能。

5.4. 讨论

5.4.1. MFA-MRSTGRN 模型的优点

与传统的单点时间序列预测模型仅考虑时间特征,能够反映单个监测点的滑坡位移相比,本文创新性地提出了一种新的滑坡位移预测方法(MFA-MRSTGRN)。该方法综合考虑了与滑坡相关的多个异构数据源,并提取内部渗流因子作为数据特征增强。通过集成四个模块,它自动捕获和学习内部和外部影响因素的重要性。同时,它动态提取了滑坡数据跨多个关系和维度的复杂时空特征,从而提高了模型的预测性能,实现了更准确的整体滑坡变形预测。
据笔者所知,目前尚无全面考虑滑坡位移预测中多层次特征注意力机制、动态图、多关系时空残差网络以及引入内部渗流因子的研究。与其他模型的结果表明,在三峡库区凉水井滑坡的预测中,所提模型在所有四个评价指标上均优于对比模型,证明了MFA-MRSTGRN模型具有良好的预测精度, 健壮性和泛化能力。

5.4.2. 所提模型的局限性和前景

鉴于地质灾害领域数据采集有限,监测站的数量和数据采集的准确性直接影响预测的准确性。然而,随着技术的不断进步,实时位移监测的水平也在不断提高。此外,迁移学习和数据增强已成为解决数据受限问题的手段。本文介绍了内部渗流因子以增强特征,同时考虑了降雨和库水位对滑坡位移的影响。未来的研究可能会通过纳入影响滑坡的其他因素(例如地质特征、方向和坡角)来建立更全面的数据集。本研究仅预测和验证了三峡地区水库岸滑坡的位移。未来的工作将涉及使用更多样化的工程案例来测试模型的预测性能。

6. 总结

该文提出一种具有多级特征注意的多关系时空图残差网络(MFA-MRSTGRN),通过构建全面的多源异构数据集,捕获具有多关系和维度的复杂时空特征来预测滑坡位移。主要结论如下:
(1)该模型提取内部渗流因子作为数据特征增强,并与外部触发因子相结合,准确捕捉了滑坡位移的时空特征,形成了全面的多源异质数据集。
(2)通过在传统图的基础上增加时间维度构建动态图,可以更好地分析和探究外部触发因素、内部渗流因素和滑坡位移之间的时空相关性。
(3)本文创新性地提出了 MFA-MRSTGRN 模型,该模型包括 4 个模块。多层次特征注意力模块自适应地捕捉和学习不同内外部影响因素对滑坡位移的重要性。同时,构建不同粒度层次的三维张量图,并进行时差分解,以综合提取与滑坡位移变化相关的多尺度特征。此外,它还设计了空间多关系图卷积模块,该模块可以灵活地适应动态图数据,以处理滑坡位移的各种空间依赖关系。
(4)将所提出的 MFA-MRSTGRN 模型应用于预测三峡库区凉水井滑坡的位移。结果表明,所提方法在预测性能方面优于RF、LSTM、ST-GCN模型。此外,特征消融实验强调,内部渗流因子对滑坡位移预测有显著影响,提示滑坡位移预测应同时考虑内部渗流和外部触发因素。

参考文献
[1] Wang Z, Fang X, Zhang W, et al. Multi-relation spatiotemporal graph residual network model with multi-level feature attention: a novel approach for landslide displacement prediction[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2024: S1674775524004785.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值