题目描述
给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
思路分析:
- 面积公式:area = min( height[i], height[j] ) * (j - i);
- 初始化两个指针,分别放在两端位置,最大面积初始化为0;
- 考虑两个指针移动方法:如果值大的值向小的方向移动,距离一定减小,而求面积的另外一个乘数一定小于等于值小的值,因此面积一定减小;
- 故采用较大值的指针不动,较小值指针向大的方向移动遍历;
代码:
class Solution(object):
def maxArea(self, height):
"""
:type height: List[int]
:rtype: int
"""
left = 0
right = len(height) - 1
maxarea = 0
while left < right:
b = right - left
if height[left] < height[right]:
h = height[left]
left += 1
else:
h = height[right]
right -= 1
area = b * h
if maxarea < area:
maxarea = area
return maxarea