VGG
简介
主要意义
试验了增加小感受野卷积网络层级深度可以提高分类结果的正确率。
预处理
各通道减去RGB在训练集上的均值。
特点
- 卷积核很小( 3 × 3 3\times3 3×3 or 1 × 1 1\times1 1×1 )
- 通过设置stride和padding使卷积层不改变layer大小
- 通过max pooling减小layer大小
- 通过一直增加卷积核的数量增加feature maps的数量
- 增加了卷积层的深度

结构
结构
结果
成果
- 证明了在一定程度上增加层级深度可以提高分类正确率
- LRN 效果并不是很明显(相比较A 而言 A-LRN 结果错位率反而稍有上升)
- B 组和 C 组比: 发现增加非线性有用
- C 组和 D 组比: 发现考虑spatial context 更重要
- 作者发现当结构变为19层的时候错误率就不再下降了并提到"but even deeper models might be beneficial for larger datasets." 或许更深层的模型可以更好的适用于更复杂的数据集
- scale jittering 对于multi-scale image 的训练还是很有用的
为什么
为什么缩小卷积核大小?
- 作者通过对照试验发现,使用 5 × 5 5\times5 5×5的浅层卷积网络结构的结果不如使用 3 × 3 3\times3 3×3更深层的卷积网络。
- 使用小卷积网络并增加深度可以获得与大卷积核相同的感受野。“ a stack of two 3×3 conv. layers (without spatial pooling in between) has an effective receptive field of 5×5”
文中提到了 dense evaluation 和 multi-crop evaluation
- 为什么作者要做dense evaluation 和 multi-crop evaluation?
fully-connected layers are first converted to convolutional layers (the first FC layer to a 7 × 7conv. layer, the last two FC layers to 1 × 1 conv. layers)
- 两种 evaluation 互为补充, 并且可以进一步提高正确率,为什么?
- muti-crop 的结果比dense的好
Also, multi-crop evaluation is complementary to dense evaluation dueto different convolution boundary conditions: when applying a ConvNet to a crop, the convolved feature maps are padded with zeros, while in the case of dense evaluation the padding for the same crop naturally comes from the neighbouring parts of an image (due to both the convolutions and spatial pooling), which substantially increases the overall network receptive field, so more context is capture
- 待研究
为什么LRN不实用?
- 作者提到“ we note that using local response normalisation (A-LRN network) does not improve on the model A without any normalisation layers”
- 待研究
思考
作者的设计初衷,我想是为了探究加深卷积网络层级,是否可以提高争取率。加深网络层级,带来的一个问题是感受野增大,每张feature map的作用域会随之扩大直至全图。这可能是设计者不愿意看到的,设计者更希望得到更多的机遇合理合理感受野大小的feature maps。因此缩小卷积核则是一个不错的选择。设计者通过对照,设计了多组认为可行的方案,并在方案中添加了诸如 1 × 1 1\times1 1×1卷积核的层级,增加了提取层的非线性。并通过对比C D组发现, 3 × 3 3\times3 3×3卷积核更为合理。设计者一方面缩小卷积核并加深卷积层级,另一方面则增多提取特征channel的数量(增加卷积核数量)试图提取更多的广泛的基于局部的信息为FC 所用。
- 对照组实验的方法很有借鉴意义,印象最深的即 B C组与 C D组的实验对照。
- 引入非线性重要
- 考虑 spatial context 重要
- dense evaluation 和 multi-crop evaluation
作者进行dense evaluation的时候把fc转化为卷积层,fc1转化乘了7X7卷积核的卷积层。fc2转化成了1x1卷积层。也就是如图1所示。
代码
待添加
参考文献
https://arxiv.org/pdf/1409.1556.pdf